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AI-Supported Eliminative Argumentation: Practical
Experience Generating Defeaters to Increase

Confidence in Assurance Cases

Abstract—Assurance cases (AC) are structured arguments1

that justify why a system is acceptably safe. Though ACs can2

increase confidence that systems will operate safely and reliably,3

they are also susceptible to problems such as reasoning errors4

and confirmation bias. Recent work proposed AI-Supported5

Eliminative Argumentation (AI-EA), a framework leveraging6

Generative AI (GAI) models to support AC development by7

identifying potential reasons why the argument may be invalid8

(a.k.a. defeaters) so that they can be mitigated. However, this9

framework was not implemented and its effectiveness was not10

assessed empirically.11

In this practical experience paper, we implement AI-EA,12

explain and justify our design choices, and report on our13

practical experience in empirically evaluating its effectiveness in14

collaboration with an industrial partner from the safety domain.15

Our evaluation considers 171 AI-generated defeaters across two16

industrial case studies from the nuclear and automotive domains.17

Our findings show that GAI can generate informative defeaters18

with few significant hallucinations and that 25% of the generated19

defeaters were confirmed by developers of each AC to represent20

reasonable doubts or errors in the argument. Our implementation21

and results are made publicly available.22

I. INTRODUCTION AND MOTIVATION23

In safety-critical domains, engineers must demonstrate that24

their systems operate safely and correctly, as system failures25

and unexpected behavior can lead to catastrophic conse-26

quences. This is often done by constructing Assurance Cases27

(AC). An AC is a comprehensive argument explaining how28

a system meets its safety objectives (e.g., the mitigation29

of identified hazards), typically by appealing to a body of30

evidence artifacts. While ACs can be expressed in various31

formats, structured modeling languages such as Goal Struc-32

turing Notation (GSN) [12] have become popular due to their33

emphasis on rigorous argumentation. In a structured assurance34

case, a high-level claim about the system (e.g., “The system35

is safe”) is iteratively decomposed through argumentation into36

simpler, lower-level sub-claims, until those sub-claims can be37

directly supported by evidence.38

ACs play an essential role in ensuring that complex systems39

are dependable and trustworthy, as they organize a wide40

array of evidence artifacts into a comprehensive argument41

showing the role each piece of evidence plays in supporting42

system safety. However, they are also prone to errors such43

as incomplete arguments, logical fallacies, and inadequate44

evidence [11]. These flaws can give stakeholders unwarranted45

confidence, potentially resulting in the deployment of unsafe46

systems. Eliminative Argumentation (EA) [10] is an AC de-47

velopment methodology that aims to increase the rigor of ACs48

by explicitly identifying and mitigating potential defeaters to 1

their arguments (i.e., reasons why the arguments might not be 2

sound). EA has been demonstrated as a useful methodology for 3

creating robust, rigorous ACs for industrial systems [5], [17]; 4

however, identifying defeaters is a creative process depends on 5

an engineer’s skill and expertise in critically analyzing ACs. 6

Developers may omit important defeaters due to confirmation 7

bias or blind spots, reducing the effectiveness of EA. Involving 8

multiple engineers with varied backgrounds and perspectives 9

can help mitigate blind spots in defeater identification, though 10

this requires additional resources and might not be feasible 11

if only a handful of engineers have the technical knowledge 12

about a system. 13

Recent progress in generative artificial intelligence (GAI) 14

has revolutionized many areas of software engineering, and 15

work is currently underway to evaluate the role GAI can 16

play in supporting software implementation, modeling, testing 17

and verification (see [9] for a recent review). Supporting AC 18

development has also been recently identified as a potential 19

area of application for GAI [20], [22]., though using GAI to 20

support safety assurance activities presents a challenge: Most 21

GAI models are black boxes, making it difficult for engineers 22

to understand why specific outputs are generated and whether 23

they are valid. For this reason, recent work [22] suggested 24

that using GAI to create ACs from scratch has significant 25

risks as GAI hallucinations during AC development can lead 26

to false confidence that a system is safe. Instead, the authors 27

proposed AI-Supported Eliminative Argumentation (AI-EA) 28

an approach that uses GAI models to provide safety experts 29

with candidate defeaters for their arguments – an idea also 30

supported by others ( [20]). These works outline high-level 31

processes where a GAI model generates a set of potential 32

defeaters for an AC, which engineers can then analyze to 33

identify novel and useful candidates worth investigating. The 34

authors argue that GAI is well-suited for this task for several 35

reasons: First, the extensive data used to train large language 36

models like GPT-4 along with their computational power en- 37

able them to compare ACs against large amounts of historical 38

data, potentially allowing them to identify defeaters to an 39

argument that would be in the blind spot of safety engineers. 40

Second, the consequences of a GAI hallucination during 41

defeater generation are significantly lower than its potential 42

risks in AC creation. While a hallucinated defeater (i.e., a 43

defeater that is actually not applicable to the AC) may cause 44

false doubts in a system that require a safety engineer’s time 45



to investigate, they do not cause false confidence that could1

result in deploying an unsafe system. Finally, GAI has been2

shown as an effective tool for supporting hazard analysis of3

cyber-physical systems, which has similarities to AC defeater4

identification [6]. However, these works [20], [22] do not5

implement their approaches and empirically evaluate their6

effectiveness on industrial case studies. This is a limitation7

for practitioners that need to understand the benefits and8

limitations of these technologies when applied in practice.9

To address this problem, in this practical experience paper,10

we present an implementation of AI-EA. We explain and11

justify the design choices of our implementation and report12

on our practical experience empirically evaluating its effec-13

tiveness in collaboration with an industrial partner from the14

safety domain. Our evaluation includes an analysis of 171 AI-15

generated defeaters across two medium-sized industrial ACs16

from the nuclear and automotive domains, containing 506 and17

317 nodes respectively. Our results show that AI-EA generated18

defeaters that were relevant and informative, that less than 6%19

of defeaters were significant hallucinations, and approximately20

25% of them corresponded to real errors and risks. We made21

our implementation and results publicly available.122

This paper is organized as follows. Section II provides23

background information on ACs, EA, GAI, and AI-enabled24

EA (AI-EA). Section III presents our implementation of the25

AI-EA framework. Section IV discussed the results of our26

empirical evaluation. Section V presents threats to validity.27

Section VI summarizes related work. Section VII concludes28

with a summary and future directions.29

II. BACKGROUND30

A. Assurance Cases and Eliminative Argumentation31

ACs are structured arguments, typically supported by ev-32

idence, that a system will adequately achieve its intended33

quality attributes (e.g., safety, security, reliability) [12]. ACs34

may be expressed in different formats, including narrative text,35

graphical tree-like notations (e.g., GSN [14], EA [10]), or36

some combination thereof. In this work, we used Eliminative37

Argumentation (EA) due to its focus on defeaters; however,38

other notations also incorporate similar elements (e.g., GSN39

“challenges” [12]). An AC expressed in EA recursively de-40

composes a top-level claim into sub-claims and supporting41

evidence. Defeater nodes enable engineers to express doubts42

about the validity of an argument, and can be used to chal-43

lenge claims, evidence and reasoning steps of the argument.44

Defeaters may be mitigated by additional argumentation. If45

a defeater cannot be mitigated, it is a source of “residual46

doubt” in the AC. As sources of doubt (defeaters) are identified47

and eliminated, confidence in the argument increases. EA48

has been applied to several industrial-scale projects in the49

automotive, rail, industrial control system domains [5], [13],50

[17], and practitioner experience has shown EA to be an51

effective approach for increasing confidence in ACs [5]. For52

1https://drive.google.com/file/d/1U3VrFinQ5NpQCtNmNQ6ZF
FTBw8LWoD7/view?usp=sharing

instance, a recent paper by Hobbs et al. describes the use 1

of EA to gain confidence in the safety case for a “startup 2

function” that initializes a real-time operating system for use 3

in automotive control systems [13]. 4

Figure 1 presents an AC fragment created using the EA 5

modeling tool Socrates2, from a case study in the automotive 6

domain. The fragment considers the response of an Adaptive 7

Cruise Control (ACC) system to failures of dependent sub- 8

systems, namely the braking system and the radar system. 9

The main claim (Claim c5550) is that the ACC will dis- 10

engage when the braking or radar systems fail. A strategy 11

node (S5552) decomposes the main claim by considering 12

sources of doubt that might undermine it. Two sources of 13

doubt are shown: the possibility that the ACC’s software 14

controller does not disengage the system upon receiving an 15

error report (D5553) and the possibility that the braking or 16

radar monitoring systems do not report an error (D5564). To 17

eliminate D5553, a software safety requirement for the ACC’s 18

software controller is expressed as a claim (C5554) which 19

is then supported by verification results (E5555, E5558). 20

However, the quality of the evidence is undermined by a 21

further defeater that questions whether the tests cover the 22

appropriate conditions (D5556). In this example, no counter- 23

argument is made to resolve this defeater, and it remains a 24

source of residual doubt (Res) in the argument. 25

B. AI-Supported Eliminative Argumentation 26

AI-Supported Eliminative Argumentation (AI-EA) [22] has 27

been recently proposed to support engineers in AC design. 28

Figure 2 shows the AI-EA framework, which consists of 29

four stages: Design, Generate, Filter, and Investigate. The 30

Design stage requires safety analysts to design the AC using 31

conventional methods (e.g., EA). The Generate stage provides 32

the AC and relevant background information to the GAI 33

model, and prompts the model to generate potential defeaters. 34

The Filter stage requires safety analysts to filter defeaters 35

that are not useful (i.e., defeaters that are not legitimate 36

doubts because they are irrelevant, inconsistent or contain 37

incorrect information). The Investigate stage requires safety 38

analysts to investigate the remaining defeaters and document 39

their mitigation (or lack thereof) in the AC. For example, 40

consider a safety engineer developing an AC for the ACC 41

system. During the Design phase, the engineer may create the 42

AC fragment depicted in Figure 1, but overlook the defeater 43

D5556, which is annotated with a special dashed red outline. 44

In the Generate phase, the engineer provides background 45

information describing the ACC and a textual representation 46

of the argument fragment in Figure 1 to the GAI model. She 47

then prompts the model to identify potential defeaters in the 48

fragment. AI-EA returns two defeaters about the unit tests: 49

1) What if the ACC does not re-engage after the unit tests 50

complete? 51

2) What if the unit tests did not exercise all conditions in 52

the source code? 53

2https://criticalsystemslabs.com/socrates

https://drive.google.com/file/d/1U3VrFinQ5NpQCtNmNQ6ZF_FTBw8LWoD7/view?usp=sharing
https://drive.google.com/file/d/1U3VrFinQ5NpQCtNmNQ6ZF_FTBw8LWoD7/view?usp=sharing
https://criticalsystemslabs.com/socrates


C5550
The ACC will disengage when 
the braking or radar systems fail.

X5551
The braking and radar monitoring systems 
provide input to the ACC software controller.

E5569
ISO 26262 certificate for the 

radar monitoring system.

OK

C5568
The radar monitoring system satisfies ISO 
26262 at ASIL D and can be depended upon 
to raise an error if there is a radar failure.

E5566
ISO 26262 certificate for the 

braking system.

OK

C5565
The braking system satisfies ISO 26262 at 
ASIL D and can be depended upon to raise 
an error if there is a braking failure.

D5564
Unless the braking system or 
radar monitoring system do not 
report a functional failure.

OK

E5573
The FMEA considered reasons the 

ACC might not respond to a braking 
or radar failure.

D5572
But a reason the ACC might not 
disengage might have been missed.

IR5571
If all reasons to doubt the ACC’s 
disengagement when an error occurs are 
resolved, then the ACC will disengage.

E5566
Software review ACC-REV-423 
confirms the ACC’s software 

transitions to DISENGAGED when a 
dependent system reports errors.

OK

Res

D5556
But the unit tests might not have 
exercised all code paths related to error 
handling from dependent systems.

E5555
Software unit test results show that 
the ACC’s software transitions to 

the DISENGAGED state when errors 
are received from a dependent 

system.

C5554
ACC-SSR-1432 - The ACC’s software shall 
transition to the DISENGAGED state when 
an error is reported by the braking or radar 
monitoring systems.

D5553
Unless the ACC fails to disengage 
after an error is raised by the braking 
system or radar monitoring system.

S5552
Argue over the reasons the ACC might not 
disengage when brake or radar systems fail.

Fig. 1. AC fragment adapted from the ACC case study.

Fig. 2. Overview of the AI-EA framework, as presented in [22].

During the Filter phase, the engineer recognizes defeater (a)1

as a hallucination and filters it out. However, defeater (b)2

expresses doubt about the adequacy of test evidence, which is3

consistent with the argument fragment and does not appear to4

be a hallucination. She thus creates a new defeater (Figure 1)5

to capture this concern, Investigates whether this defeater6

represents a reasonable doubt to the system and, if so, whether7

it can be mitigated. In this example, a potential mitigation8

could come from test coverage analyses indicating that full9

path coverage has been achieved. If mitigation of the defeater10

cannot be demonstrated, it should then be documented in the11

AC as a source of residual uncertainty, as in Figure 1.12

III. IMPLEMENTING AI-EA 1

Figure 3 presents our implementation of the AI-EA frame- 2

work. Our implementation focuses on the Generate step (i.e., 3

leveraging GAI models to identify defeaters for an existing 4

AC) and the Filter step (i.e., processing generated defeaters to 5

provide a set of reasonable candidate defeaters to investigate). 6

We do not restrict how the ACs should be developed during 7

the Design step; any AC represented in GSN or EA notation 8

can be used as input. The output of our implementation is a 9

set of candidate defeaters to be investigated by domain experts 10

in the Investigate step. 11

A. Defeater Generation 12

The Generate phase uses GAI to generate a set of potential 13

defeaters to a given AC. Our implementation uses the GPT-4 14

large language model [18]. To interact with the GAI model, our 15

implementation uses three separate prompts. Prompt 1 takes 16

input from the AC developer to provide background informa- 17

tion about the system under analysis and the AC argument in 18

question to the GAI model. Prompt 2 generically asks the 19

model to identify reasons to doubt the provided argument 20

fragment without providing contextual information about what 21

type of defeaters should be generated or what they should be 22

used for, and Prompt 3 asks the model to identify defeaters in 23

the argument fragment after providing contextual information 24

about EA, the role that defeaters play in supporting AC 25

development, and describing different categories of defeaters. 26

Prompt 1: Background information. The input used to in- 27

stantiate Prompt 1 templates consists of two parts: 1) a textual 28

description of the system under analysis, and 2) a fragment of 29



Fig. 3. Overview of our implementation of AI-supported Eliminative Argumentation.

the AC argument that captures a single reasoning step (i.e., the1

decomposition of a parent claim into sub-claims). The system2

description includes the purpose of the system, its operating3

environment, its components, and their relations. The argument4

fragment consists of a parent claim, a decomposition strategy,5

its sub-claims, and any context/assumption/evidence nodes6

directly connected to those subclaims.7

Prompt 2: Identify Generic Doubts. This prompt generically8

asks the model if there are potential reasons to doubt the AC9

fragment that was provided as input in Prompt 1. Prompt 210

does not provide any background information on EA or its11

role in safety assurance. The prompt is given as follows:12

P2: “Are there any potential reasons to doubt this13

assurance case? List any identified doubts in the14

form ⟨⟨ Doubt 1: ...⟩⟩, beginning with the symbols15

“⟨⟨” and ending with the symbols “⟩⟩”, with one16

doubt per line. Where possible, highlight the follow-17

ing three components in each doubt: The *what*,18

meaning the identified potential flaw in the system19

or argument; the *where*, meaning the portion of20

the argument or component of the system which is21

the subject of the doubt; and a *why*, which is an22

explanation of why this argument could be defeated23

by the identified doubt.”24

The word “doubt” was used instead of “defeater” for this25

prompt, as preliminary experiments revealed that GPT-4 would26

frequently fail to find doubts in the arguments when the word27

“defeater” was used without providing context. This is likely28

because the word “defeater” can take on slightly different29

meanings in different contexts, and one generic definition30

of a defeater is evidence that a belief is false, whereas in31

the context of Eliminative Argumentation, defeaters include32

potential weaknesses that could defeat the argument if not33

appropriately mitigated.34

Prompt 3: Identify Defeaters Given Context about EA.35

In contrast to Prompt 2, Prompt 3 adds a preamble which36

defines EA, the role that defeaters play in supporting AC37

development, and different defeater types. The description of38

EA was provided to remove potential ambiguities around the39

words “doubt” and “defeater”, and to give further context40

about how defeaters are used in safety analysis. Prompt 3 1

repeats Prompt 2 while replacing the word “doubt” with 2

“defeater”, and adding the following preamble: 3

Preamble (P3): “Eliminative argumentation is a 4

methodology that aims to increase confidence in as- 5

surance cases by identifying doubts in an argument 6

(called ”defeaters”) and showing how they have 7

been mitigated. There are several different types of 8

defeaters: A rebutting defeater identifies a potential 9

reason why a claim could be false, an undermining 10

defeater identifies a potential reason why evidence 11

could be invalid, and an undercutting defeaters iden- 12

tify potential reasons why the truth of an argument’s 13

child claims is insufficient to determine whether its 14

parent claim is true or not.” 15

Prompt 3 gives contextual information that may help the 16

model understand the types of defeaters it should produce; 17

however, providing this context may also cause it to omit 18

certain defeaters which represent valid concerns but do not 19

correspond to the model’s understanding of the task. For 20

example, if the model erroneously interpreted the preamble in 21

Prompt 3 to mean that all identified defeaters should increase 22

confidence in the AC, it may then avoid generating defeaters 23

that identify a blatant error in the argument. Prompt 2 is used 24

in conjunction with Prompt 3 which leads to increasing the 25

breadth of possible defeaters the model can generate and to 26

mitigate potential omissions if a misinterpretation like this 27

occurs. The choice to aggregate results generated by Prompt 2 28

and Prompt 3 was informed by preliminary experiments which 29

indicated that each prompt yields useful but different results. 30

In Prompts 2 and 3, the model is told to structure its 31

responses into three parts: a “What” component, a “Where” 32

component, and a “Why” component. The “What” component 33

contains either an event, scenario, behavior, or aspect of the 34

system under study or a flaw in the AC argument. The “Where” 35

component references one or more aspects of the system 36

under study, or one or more nodes in the AC argument. The 37

“Why” component explains why the entity identified in the 38

“What” component could pose a credible threat to the AC 39

argument. For example, defeater D5556 from Figure 1 could 40

be expressed by the model as below. 41



What: Insufficiency of unit tests to demonstrate1

correct error handling.2

Where: In CHILD EVIDENCE E5555.3

Why: Without evidence that sufficient coverage has4

been achieved, it is possible that the test results may5

not have exercised code paths related to error han-6

dling, thereby weakening the evidence supporting7

the correctness of error handling.8

We selected this format for Prompts 2 and 3 after ap-9

proximately 10 trial-and-error experiments that qualitatively10

assessed the results from different prompts. We found that11

explicitly separating the “What”, ‘Where,” and “Why” com-12

ponents helped mitigate the generation of wordy and rambling13

defeaters that would sometimes occur otherwise. Additionally,14

this format gave us a more structured approach to identifying15

hallucinations. Hallucinations can be detected in this format by16

(i) ensuring that the information provided in each component17

is accurate, and (ii) ensuring that components are consistent18

and relevant to each other.19

B. Filtering20

The filtering step concerns the manual inspection of the21

generated defeaters to determine which (if any) are worthy22

of further investigation. Our implementation of AI-EA uses a23

three-step filtering process.24

Step 1: Dismiss Uninformative Defeaters. To be worth25

investigating, a defeater must be sufficiently informative and26

concrete to indicate to the AC developer the potential issue and27

where they should focus their attention to assess it. Generic28

residual uncertainties, such as the defeater “There may be29

an unconsidered failure that could defeat the argument” do30

not provide concrete information about what types of failures31

could arise and where/why they might defeat the argument and32

can be filtered out. In contrast, consider the defeater “Claim33

C1040 does not consider the potential for lapses of control34

when the ACC transitions from a Disengaged to an Engaged35

state. These transitions could reduce vehicle safety due to36

driver confusion”. This defeater indicates a specific doubt,37

where it impacts the argument, and why it may defeat the38

argument if not mitigated, giving engineers a concrete concern39

to investigate.40

In general, the usefulness of defeaters depends on context,41

and it relies on a reviewer’s subjective assessment to determine42

whether the defeater is sufficiently informative. In our imple-43

mentation, reviewers filter uninformative defeaters by scoring44

each generated defeater based on the extent to which they45

provide a concrete What, Where and Why component.46

Step 2: Identify (and Repair) Hallucinations. Generative47

AI models can produce hallucinations: outputs that appear48

convincing but contain errors or fabricated information. When49

a hallucination is identified, then either (i) the defeater contains50

a minor error or discrepancy, but the reviewer can easily51

identify what the defeater should be saying; or (ii) the defeater52

contains a significant error or inconsistency, and it is either53

meaningless or difficult to interpret. For these cases, the54

engineer can respectively fix or discard the defeater.55

Step 3: Identify Duplicates. As GAI models are non- 1

deterministic, repeating the same prompts can cause the model 2

to identify new defeaters; however, this comes with the trade- 3

off that duplicate defeaters can also be produced. Once boiler- 4

plate and severely hallucinatory defeaters have been dismissed, 5

duplicates must also be filtered out. There are two kinds 6

of duplicate defeaters: duplicates within the set of generated 7

defeaters itself (i.e., two generated defeaters identifying the 8

same doubt), and defeaters that are already covered in a portion 9

of the real AC (which may or may not have been provided 10

as input to the model). Duplicates of both kinds should 11

be filtered out to avoid redundant investigation, especially 12

if AC development is being performed collaboratively (as 13

is often the case). Our evaluation of AI-EA has reviewers 14

manually evaluate defeaters to identify duplicates, though this 15

stage could be partially automated using syntactic heuristics 16

to identify potential duplicates. The GAI model itself may 17

also be able to provide support for identifying and filtering 18

duplicates, though we have not yet incorporated this into our 19

implementation. 20

After performing these steps, the remaining defeaters should 21

be novel, informative, and hallucination-free, and thus provide 22

a reasonable starting point for further investigation. It then falls 23

to the engineer to assess which, if any, of these defeaters pose 24

credible risks to the argument and require mitigation. 25

IV. EVALUATION 26

For AI-EA to be effective in supporting EA, the GAI 27

model must be able to generate useful defeaters that survive 28

the Filtering stage. Evaluating the effectiveness of AI-EA 29

requires a method for assessing the usefulness of AI-generated 30

defeaters. This is challenging as there are no established 31

frameworks for evaluating the usefulness of defeaters or 32

comparing defeaters against one another. Assessing whether 33

a defeater is sufficiently useful to include in an AC is a 34

largely subjective process based on an engineer’s experience; 35

however, as noted in Section III, there are some criteria that 36

can strongly suggest that a defeater is not useful, such as 37

if it is uninformative or not consistent with the AC and its 38

associated system. We first evaluate our implementation of 39

AI-EA by considering the following three research questions, 40

which measure the informativeness, coherence and usefulness 41

of defeaters, respectively: 42

RQ1 (Informativeness). How frequently do GAI-generated de- 43

featers concretely describe “What” the identified doubt 44

is, “Where” it impacts the system/argument and “Why” it 45

could defeat the argument? (Section IV-A) 46

RQ2 (Coherence). How frequently do generated defeaters 47

contain hallucinations, and how severe are they? (Sec- 48

tion IV-B) 49

RQ3 (Usefulness). To what extent can GAI models generate 50

defeaters that give useful insights to safety engineers? 51

(Section IV-C) 52

In addition to evaluating the quality of individual defeaters, 53

we also measure whether the semantics of the defeaters – that 54

is, the concepts and entities they refer to – vary based on the 55



system description and target argument provided to the GAI1

model. One of the main potential benefits of AI-EA is that2

safety engineers can have blind spots and biases related to the3

systems they develop, and consequently, they may overlook or4

omit important defeaters. If GAI models continually produce5

the same type of defeaters regardless of the input they are6

given (e.g., only questioning the validity of evidence), this7

would significantly limit the usefulness of AI-EA and indicate8

that the model is not actually considering its input as part of its9

decision-making. We assess whether the concepts referred to10

in the defeaters are appropriate in the context of the provided11

inputs with the following question:12

RQ4 (Semantics). Does GAI identify the same types of de-13

featers across every system/argument, or can they gener-14

ate different types of defeaters depending on the system15

description and strategy provided as input? Do these16

variations reflect the contents of its inputs? (Section IV-D)17

Models and Methods. Our study subjects are the Adaptive18

Cruise Control (ACC), and the CERN Large Hadron Collider19

(LHC) Machine Protection System (MPS)3 [17].20

The ACC case study is an AC developed a company in21

the safety domain with experience assessing safety and secu-22

rity risks associated with complex hardware/software-intensive23

systems. A portion of the ACC argument was presented24

in Section II. The full AC is publicly available and was25

designed to be representative of confidential ACs that have26

been previously developed for real systems in the automotive27

domain. 4. The argument for the ACC was expressed using28

EA and is of small-to-medium size, consisting of 317 nodes.29

It contains 10 strategies, four of which were analyzed in our30

evaluation. It took the creators between two and three months31

to create the ACC model.32

The CERN LHC case study is an AC from the nuclear33

domain related to the CERN particle accelerator [15]. The AC34

concerns the Machine Protection System (MPS) responsible35

for protecting the LHC from damage during operation. The36

argument contains 506 total nodes and 32 strategies, five of37

which were analyzed in our evaluation. The MPS AC was de-38

veloped over a three month period as a collaboration between39

academic researchers and a company from the safety domain,40

and validated by experts from the European Organization for41

Nuclear Research (CERN)5.42

We used the state-of-the-art large language model GPT-43

4 [18] to generate 171 defeaters across nine different argument44

fragments from our two study subjects. These fragments were45

selected from various levels of each AC, ranging from top-46

level to low-level arguments with claims directly connected47

to evidence. For each argument, we performed two rounds48

of defeater generation following the process outlined in Sec-49

tion III-A, which were then aggregated. Our evaluation was50

conducted by three authors, with two authors evaluating each51

case study. Each of these authors has more than three years52

3https://cds.cern.ch/record/2854725?ln=en
4https://safetycasepro.com/examples/ACC/
5https://home.cern/

of experience researching ACs, and one author was directly 1

involved in creating each AC. 2

A. RQ1. Informativeness 3

Methodology. To evaluate the informativeness of GAI- 4

generated defeaters, we assessed the extent to which each 5

defeater was able to provide a concrete What, Where and 6

Why component. Two authors assigned a score between zero 7

and two to the “what”, “where”, and “why” components of 8

each defeater (as described in Section III-B) based on whether 9

the component was absent, present but generic, or present 10

and concrete. As an example of how defeaters were scored, 11

consider the following defeater: 12

“ACC D66: 13

What: The failure modes of the ACC when disen- 14

gaged could have been overlooked. 15

Where: In PARENT CLAIM 6000, where it is 16

claimed that the ACC does not reduce the safety of 17

the vehicle while disengaged. 18

Why: The assurance case does not study all potential 19

failure modes of the ACC when disengaged. Some 20

failure modes could affect safety, either directly or 21

indirectly, even when the ACC is disengaged.” 22

Reviewers assigned a score of one to the “What” component 23

of this defeater as, while it indicates that failure modes 24

could have been overlooked in a particular setting (i.e., while 25

the system is disengaged), it does not indicate what these 26

overlooked failure modes might be. The “Where” component 27

was given a score of two, as the defeater precisely indicates 28

a specific claim that was the subject of concern. The “Why” 29

component was given a score of one, as though the defeater 30

indicates that these overlooked failure modes are relevant to 31

safety and could defeat the argument, it does not concretely 32

state what aspects of the system’s safety could be impacted by 33

these failures. Summing these scores yields a value of four out 34

of six, which gives an approximate measure of the defeater’s 35

informativeness. 36

Results. The average scores for each component of each 37

defeater are given in Table I. The scores were calculated as the 38

average given by the two reviewers. Across all 171 defeaters, 39

only 19 received a summed score of less than 4/6. In contrast, 40

88 received a score of 5.5/6 or greater; the following defeater 41

is one such example: 42

“CERN D43: 43

What: Redundancy of the BLMS components. 44

Where: CHILD INFERENCE 110. 45

Why: While the assurance case mentions redundancy 46

within the Machine Protection System (MPS), it 47

fails to address the specific redundancies within the 48

BLMS component. Without knowing the redundancy 49

measures in place for the detectors, Tunnel Electron- 50

ics and Surface Electronics, we cannot be assured 51

of the system’s ability to handle any malfunctioning 52

components of the BLMS properly.” 53

We also observed that the average scores across each 54

component were greater than 1.5/2. This shows that (i) each 55

https://cds.cern.ch/record/2854725?ln=en
https://safetycasepro.com/examples/ACC/


TABLE I
THE AVERAGE CLASSIFICATION SCORE OF EACH COMPONENT OF EACH

DEFEATER.

System Avg. What Avg. Where Avg. Why

CERN 1.68 1.75 1.68
ACC 1.66 1.54 1.70

component was usually present and concrete in each defeater,1

(ii) nearly half of the generated defeaters included concrete2

What, Where and Why components, and (iii) only a very3

small portion of the generated defeaters contained no concrete4

information. We observed that the few generated defeaters with5

very low informativeness scores (≤2.5) mostly corresponded6

to (i) hallucinations, and (ii) extremely generic concerns about7

the argument itself, e.g., asserting that a claim in the argument8

could be incorrect, but not indicating which claim or what9

issues it may have.10

The two AC reviewers gave the same score to 67.4% of11

defeater components across both ACs. Reviewer scores had12

a difference of 1 for 30.7% of defeater components, and13

only 1̃.7% of components were assigned a score of 2 by one14

reviewer and 0 by the other. This result suggests that while15

measuring the informativeness of GAI-generated defeaters is16

subjective, reviewer assessment is consistent.17

B. RQ2. Coherence18

Methodology. Two authors analyzed the dataset to assess19

whether each defeater contained a hallucination and, upon20

identifying a hallucination, recorded (i) the component of the21

defeater that the hallucination pertained to (i.e., the “What”,22

“Where”, or “Why” aspect); (ii) the nature of the hallucination,23

i.e., whether the hallucination was inaccurate (i.e., producing24

false output) or irrelevant (i.e., producing output not related to25

a doubt in the AC); and (iii) whether the defeater was still com-26

prehensible and applicable to the AC despite the hallucination27

(i.e., a “minor” hallucination), or if the hallucination caused28

the defeater to be inapplicable to the AC (i.e., a “major”29

hallucination).30

Results. For each defeater component, Table II shows the31

percentage of defeaters from our dataset that contained a hal-32

lucination in that component. It also highlights the percentage33

of defeaters that contained minor and major hallucinations34

and the defeaters that contained inaccurate and irrelevant35

hallucinations.36

The results show that for the ACC and the CERN ACs37

respectively, 13 out of 74 and 20 out of 97 defeaters contained38

a hallucination in at least one component of the AC. Of39

these 33 hallucinations, 24 were minor issues that did not40

significantly impact the reviewers’ ability to understand the41

defeater or its relevance to the AC. For example, the ACC42

defeater43

“The verification of the ACC’s initial state being44

Disengaged doesn’t appear to consider the possi-45

bility of a system bug or malfunction causing it to46

change state uncommanded. Child evidence 101247

only demonstrates the initial startup state, not what 1

might happen afterwards. This could cast doubt on 2

Child Claim 1011.” 3

identified a reasonable doubt in the argument (i.e., that an 4

uncommanded state changes could occur), but was classified 5

as a “Minor/Inaccurate/Where” hallucination as it attributes 6

this doubt to the wrong claim. C1011 (“The initial state of 7

the ACC shall be Disengaged.”) only makes an assertion about 8

the system’s initial state. 9

Though most hallucinations were minor, 9 of the 33 10

identified hallucinations produced output that was either in- 11

comprehensible or misinterpreted key details about the sys- 12

tem/argument that made them inapplicable to the AC. For 13

example, the ACC assurance case defeater 14

“ACC 41: The assurance case does not appear to 15

address the transition periods between Engaged and 16

Disengaged, or vice versa. These transitions might 17

be critical in terms of safety. If the system latency 18

during transitions leads to safety concerns, it could 19

defeat claims like Child Claims 8000 and 7000” 20

was classified as a “Major/Inaccurate/What” hallucination, 21

as the purported issue, i.e., that the AC does not address 22

transitions between Engaged and Disengaged states, is false. 23

The fragment of the AC given to the model contained claims 24

addressing these exact transitions. 25

While GAI models clearly have the potential to misinterpret 26

the input they are given and generate false/incomprehensible 27

defeaters, our results show that major hallucinations are few 28

and far between. Most of the identified hallucinations pertained 29

to minor details that could be easily identified and repaired by 30

AC reviewers, e.g., defeaters that identified a valid concern 31

but attributed it to the wrong claim in the argument. 32

C. RQ3: Usefulness 33

Methodology. Two authors assessed each defeater to identify 34

those that represented reasonable doubts that could strengthen 35

the argument if mitigated. These assessments were done 36

subjectively based on the authors’ domain expertise and their 37

knowledge as developers of the ACs. A discussion was then 38

held between the reviewers to produce a single list of useful 39

defeaters. 40

Results. For the ACC assurance case, we identified that 41

out of the 44 unique defeaters examined (excluding 30 42

duplicate defeaters), 15 raised realistic doubts not directly 43

covered in the model’s input. For the CERN AC, 18 out of 44

78 unique generated defeaters were useful. For example, a 45

useful defeater for the CERN AC correctly identified that one 46

of the argument’s strategies did not consider the speed of 47

communication between the subsystems it argues over, and 48

the parent claim only holds under the implicit assumption 49

that no communication delays occur. A useful defeater for 50

the ACC accurately identified limitations in the argument’s 51

evidence, which only tested the system’s integration with 52

typical hardware components. 53



TABLE II
THE PERCENTAGE OF DEFEATERS CONTAINING HALLUCINATIONS OF THE SPECIFIED TYPES.

System Defeater Component Severity Types

What Where Why Minor Major Inacc. Irrel.

MPS 4.2% 10.3% 6.2% 16.5% 4.2 % 11.3% 9.3%
ACC 9.4% 2.7% 5.4% 10.8% 6.7% 12.1% 5.4%

The GAI model also produced several defeaters that identi-1

fied real errors in the ACs. For example, consider the following2

defeater:3

“CERN 35:4

What: The actual time required for activating the5

MKD magnets.6

Where: CHILD EVIDENCE 304: Design specifica-7

tions of MKD transmission lines show that magnet8

activation time is > 2.8 microseconds (Sec. 17.3.1).9

Why: The assurance fragment mentions that the10

MKD magnet activation time is ”greater than” 2.811

microseconds, but does not specify by how much.12

Thus there is a possibility of it potentially taking13

longer than the 92 microseconds stated in the parent14

claim”.15

The defeater correctly identifies that Evidence 304 gives16

no upper bound on the activation time for one of the system’s17

magnets. In reality, the node Evidence 304 contained a18

typo: the AC developer intended to write “< 2.8”rather than19

“> 2.8”. This exemplifies the model’s ability to identify logical20

flaws that human AC developers may miss.21

In summary, approximately one-quarter of the GAI-22

generated defeaters (excluding duplicates) identified realistic23

doubts that would strengthen the argument if included and24

mitigated. These defeaters ranged from unconsidered hazard25

scenarios to unstated implicit assumptions and concrete errors26

in the AC’s nodes.27

D. RQ4. Semantics28

Methodology. We created a taxonomy of semantic topics29

for the generated defeaters in an incremental fashion. We took30

an initial, random sample of defeaters and identified a set of31

recurring themes (e.g., “synchronization issues”, “inadequate32

evidence”). We then attempted to map each defeater from the33

dataset to one of these topics. If no matching topic was present34

in the taxonomy, a new class was added, and previous clas-35

sifications were revised to maintain consistency. This process36

was conducted separately by two authors, who then compared37

their results to collectively arrive at a consistent classification38

scheme for the generated defeaters. Once our classification39

scheme was finalized, we counted the distribution of each40

defeater class for each input argument of both ACs.41

Results. Table III presents the relative frequency of the42

topics of the generated defeaters. The arguments studied for43

the MPS and ACC are numbered #1-#5 and #6-#9, respec-44

tively. We observed variability in the semantics of generated45

defeaters at both the system level and the argument level.46

At the system level, we see a significant degree of variance 1

between the defeaters generated for the MPS versus the ACC, 2

e.g., some topics appear frequently in defeaters of one AC and 3

do not appear in the defeaters of the other at all. The system 4

descriptions of the MPS and its AC emphasize its component- 5

based architecture, so it is natural to propose defeaters re- 6

lated to component interactions (e.g., communication delays 7

or synchronization errors). Conversely, the model frequently 8

proposes defeaters related to the black-box nature of the ACC’s 9

sensor system, whereas there are no black-box components in 10

the MPS. At the argument level, we can also observe semantic 11

variability, albeit to a lesser degree. We believe that being 12

the MPS an industrial, complex system leads to a higher 13

variability. We find that these variations between each system’s 14

arguments are sensible. For example, argument #1 is an 15

argument over the primary components of the MPS; therefore 16

a higher number of defeaters refer to communication and 17

synchronization issues between the components. Argument #3 18

pertains only to the timing of a single component’s actions, 19

hence there is an overt emphasis on delays rather than the 20

integrity of communication between components. 21

Our results assuage the concerns that either (a) the content 22

of the input has no effect on the semantics of the generated 23

defeaters, or (b) the semantic relationships between the input 24

and output are random or incoherent. 25

V. LESSONS LEARNED AND THREATS TO VALIDITY 26

Lessons Learned. Our results show that the GAI model 27

generated a high portion of informative, non-hallucinated 28

defeaters that should not be dismissed in Filter stage of 29

AI-EA (RQ1 and RQ2). Approximately one quarter of the 30

non-duplicated defeaters identified realistic doubts that would 31

strengthen the argument if mitigated, including errors in each 32

AC that were previously unnoticed (RQ3). None of the de- 33

featers identified as useful for the ACC assurance case received 34

a combined informativeness score of less than 4.5, and 13 35

of them received a score of higher than 5.5. This suggests 36

that, while the presence of concrete “What”/“Where”/“Why” 37

components is not sufficient for a defeater to be useful, the 38

absence of one or more components is strongly correlated 39

lack of usefulness of a defeater. Filtering out defeaters with 40

low informativeness scores is thus unlikely to cause engineers 41

to overlook useful defeaters. Finally, the semantics of the 42

generated defeaters are meaningfully connected to the content 43

of the argument fragment passed as input to the model (RQ4). 44

Our results demonstrate that AI-EA is capable of supporting 45



TABLE III
RELATIVE FREQUENCY OF TOPICS MENTIONED IN GENERATED DEFEATERS (EXCLUDING SEVERE HALLUCINATIONS AND DUPLICATES). SOME

DEFEATERS CORRESPOND TO MORE THAN ONE TOPIC, SO COLUMNS DO NOT ALWAYS ADD TO 100%.

Topic MPS Arguments ACC Arguments

#1 #2 #3 #4 #5 #6 #7 #8 #9

Single point of failure 17% 10% – – – – – – –
Lossy communication 8% 10% – – 13% – – – –
Delayed communication 42% 10% 14% – 13% – – – –
Synchronization/delays 25% 10% 57% 10% – – – 6% –
Redundancy 8% 10% – 10% – – – –
Operating conditions – 10% 14% 20% 13% 8% 9% 31% 13%
Black box uncertainty – – – – – 25% 27% 13% 13%
Maintenance/monitoring – 10% – 10% – 8% – – –
Term/concept undefined – 10% – 10% – 17% 18% 6% –
Robustness unspecified – – – – 25% – – – –
Data accuracy 8% – – – 13% – – – –
Human error 8% – – – – – – 19% –
Unintended interactions – 10% – 10% – – 9% – –
Insufficient evidence 17% 10% – 20% – 17% 36% 13% 25%
Infeasible claim – – – – – 17% 9% – –
Unspecified failure 16% – 14% 10% 25% 8% 9% 13% 50%

practitioners in AC development by identifying a diverse range1

of relevant and nontrivial defeaters.2

We also observed that, while defeaters with major hallu-3

cinations were not directly useful, the process of assessing4

their severity sometimes led to interesting discoveries in the5

argument. For example, assessing a hallucinated defeater for6

the ACC system led to a discussion between authors which7

ultimately resulted in a contradiction being identified in the8

argument. It is possible that the presence of certain types of9

errors in an AC will cause GAI models to produce specific10

types of hallucinations. Further study into these correlations11

(e.g., by analyzing AI-generated defeaters for ACs that contain12

intentional errors) may enable GAI hallucinations to play a13

direct role in identifying issues within ACs.14

There are several techniques that can be applied to optimize15

the performance of GAI models for specific tasks. Models16

can be fine-tuned by ingesting additional documents and17

benchmark examples; however, this is not currently feasible in18

the context of AI-EA as there are very few publicly available19

ACs [16], and there are no established “gold-standard” bench-20

mark EA ACs that are known to contain no errors. Ingesting21

additional documents may become more feasible as the library22

of publicly available ACs – especially those developed using23

EA – increases. We do not claim that the GAI model and24

prompts used in our implementation of AI-EA are optimal;25

instead, our work demonstrates the effectiveness of using GAI26

models out-of-the box with a reasonable set of prompts to27

generate defeaters in practice, and provides a set of evaluation28

criteria for AI-generated defeaters that can be used to facilitate29

further optimization.30

One limitation of AI-EA is the manual effort required to31

identify and filter duplicates when a large number of defeaters32

is generated. In our experiments, we found that it was useful to33

repeat the same set of prompts to the model multiple times due34

to variations in the model’s output. More repetitions are likely35

to generate a wider breadth of defeaters, but also increase36

the amount of manual effort required to identify and filter 1

duplicates. In our implementation, we prompted the model 2

twice for each argument fragment as we noticed that further 3

prompts yielded diminishing returns, though it is possible that 4

additional useful defeaters could have been generated with 5

more repetitions. Techniques to partially automate the filtering 6

of duplicates can be used to support more prompt repetitions, 7

such as using syntactic heuristics to identify potential du- 8

plicates or by leveraging the GAI model itself to filter the 9

generated dataset for duplicates. 10

Another limitation of AI-EA is that practitioners may have 11

concerns related to data privacy when interacting with GAI 12

models, as industrial ACs often contain proprietary informa- 13

tion. This concern can be mitigated by sanitizing input to the 14

model by removing confidential details or presenting these 15

details at a higher level of abstraction, or by using a local GAI 16

model. There were no data privacy concerns for our evaluation 17

as all case studies we used were in the public domain. 18

Threats to Validity. Evaluating defeaters is a subjective task 19

that depends on the judgment and experience of reviewers, 20

and it is possible that another group of evaluators would 21

have arrived at different results than ours. We mitigated this 22

concern in three ways: two authors independently evaluated 23

each defeater; we used a structured method to evaluate specific 24

concrete aspects of each defeater (e.g., “What”, “Where”, 25

“Why”, whether the defeater was a hallucination, etc.); and 26

we computed measures of agreement among independent 27

reviewers. We conducted two rounds of defeater generation, 28

with each round using two prompt templates; more or fewer 29

rounds may have generated different results. Our study is 30

based on one AC from the nuclear domain and one AC 31

from the automotive domain developed by a safety company. 32

ACs prepared in another context or by different authors 33

may use different terminology or rely on different argument 34

structures. This study was performed using GPT-4, with its 35

default API configuration. Another model could have produced 36



different results. The rapid advancements in GAI models mean1

another model might become available shortly with better2

performance. Our main contribution is providing a baseline3

of empirical results that establish the feasibility of the AI-4

EA framework based on our practical experience generating5

and evaluating defeaters for real ACs, as well as providing a6

scheme for evaluating AI-generated defeaters that can be used7

to optimize AI-EA by measuring the effectiveness of different8

implementations.9

VI. RELATED WORK10

The use of GAI models as tools for defeater identification11

was investigated by Viger et al. [22]. As mentioned in Sec-12

tion I, their proposal relies on GAI to generate a set of potential13

defeaters, which are then manually filtered by human experts.14

The present work significantly extends this proposal, providing15

structured prompts for defeater generation, evaluation criteria16

for manual filtering, and empirical results based on industrial17

case studies.18

Shahandashti et al. [20] proposed using GAI for AC devel-19

opment through eliminative argumentation (EA) by focusing20

on three objectives: (i) to determine whether GPT-4 is “aware”21

of EA syntax and semantics (which the paper focused on);22

(ii) to use GAI models for defeater identification, and (iii) to23

use of GAI models for defeater mitigation. Shahandashti et24

al. provide empirical results for objective (i), which suggest25

that GPT-4 is familiar with the core concepts of EA. With26

respect to objective (ii), Shahandashti et al. mention possible27

approaches for LLM-based defeater identification, e.g., via28

Chain-of-Thought prompting techniques [23]. They also fore-29

see the involvement of human experts in evaluating defeaters30

proposed by GAI models. However, no concrete examples of31

such prompts, evaluation criteria, or experimental results were32

given. Objective (ii) coincides directly with the proposal of33

Viger et al. [22] and with the focus of the present work which34

addresses the above limitation. Specifically, our work provides35

the first concrete implementation and empirical evaluation36

of AI-supported defeater generation. Our experiments use37

a traditional prompting scheme, so our results can provide38

a baseline for future experiments with more sophisticated39

prompting techniques.40

Many researchers have investigated the strengths and limi-41

tations of GAI models in software and safety engineering pro-42

cesses. These include the writing of formal specifications [4],43

hazard analysis [6], goal modeling [3], software modeling [2],44

and testing [19]. The use of GAI in these tasks presents45

new opportunities for research in AC development techniques46

beyond only EA. For example, recent developments in AI-47

supported formalization [4] and proof engineering [7] could48

provide significant improvements to existing AC development49

techniques which leverage on formal methods [1], [8], [21].50

One impediment to such research is the dearth of publicly51

available ACs to be used as training and testing data. The52

creation and interpretation of ACs and AC development logs53

as data [16] is one attempt to address this limitation, but more54

work is needed.55

VII. CONCLUSION 1

In this paper, we presented an implementation of the AI- 2

EA framework for leveraging GAI to identify defeaters in 3

ACs. We detailed our implementation, presented and justified 4

a set of criteria for evaluating AI-generated defeaters, and 5

empirically evaluated the effectiveness of our implementation 6

by assessing 171 AI-generated defeaters for two industrial 7

ACs in collaboration with an industrial partner. Our results 8

show that AI-EA was able to generate contextually relevant, 9

informative and realistic defeaters without requiring reviewers 10

to filter out large numbers of irrelevant or incoherent defeaters. 11

Developers of each AC also confirmed that approximately 12

25% of the unique generated defeaters represented reason- 13

able concerns or errors in the argument that could increase 14

confidence if mitigated. Our dataset, evaluation and imple- 15

mentation are publicly available6. In future work, we intend 16

to optimize our implementation by evaluating the impact of 17

the different parameters on the quality of the results. Such 18

parameters include the GAI model used and its settings, the 19

type of background information given to the model, ingestion 20

of additional training documents, and altering the mode of 21

interaction with the GAI model (e.g., prompt refinement). We 22

also plan to explore other areas of AC development that GAI 23

can support, such as change-impact assessment and argument 24

formalization. 25
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