
WWW.CRITICALSYSTEMSLABS.COM

Adapting ISO/PAS 8800 to AI and ML System Safety 
Assurance within Other Industries

Ehsan Ghahremani – Critical Systems Labs Inc. 
Jonathan Groves – Critical Systems Labs Inc. 
Jeff Joyce – Critical Systems Labs Inc. 
Laure Millet – Critical Systems Labs Inc. 

Copyright Notice:

© 2025 Critical Systems Labs Inc. 



 

Adapting ISO/PAS 8800 to AI and ML System 

Safety Assurance within Other Industries 
 

Ehsan Ghahremani  

Critical Systems Labs Inc. 

Vancouver, Canada 

ehsan.ghahremani@cslabs.com 

 

Jeffrey Joyce 

Critical Systems Labs Inc. 

Vancouver, Canada 

jeff.joyce@cslabs.com 

Jonathan Groves 

Critical Systems Labs Inc. 

Vancouver, Canada 

jonathan.groves@cslabs.com 

 

Laure Millet 

Critical Systems Labs Inc.  

Vancouver, Canada 

laure.millet@cslabs.com 

Abstract — Most commonly used safety standards were 

developed before the widespread adoption of Artificial 

Intelligence (AI) and Machine Learning (ML) systems, and 

therefore do not address the safety implications of AI/ML 

systems and components. As AI/ML use expands, particularly 

in safety-critical systems, a framework for their safe use is 

urgently needed. 

Across industries, current safety standards derived from 

IEC 61508, such as ISO 26262 (automotive), EN 50128 (rail), 

IEC 61511 (process), and other sector-specific standards such as 

DO-178C (aerospace) provide no explicit guidance on AI/ML. 

These will be referred to in this paper as “conventional” 

standards.  

ISO/PAS 8800, a recent automotive-focused standard for AI 

safety, offers explicit guidance for AI/ML systems. This 

whitepaper by Critical Systems Labs (CSL) generalizes 

ISO/PAS 8800’s key recommendations to other industries, 

highlighting how ISO/PAS 8800 can supplement conventional 

standards in addressing AI/ML safety. 
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I. INTRODUCTION 

High-integrity systems across industries are increasingly 

incorporating Artificial Intelligence and Machine Learning 

(AI/ML) into their system. Conventional (i.e., non-AI/ML) 

safety standards provide no guidance on how AI/ML should 

be addressed within safety-critical designs. This creates a 

significant gap. 

ISO/PAS 8800 was developed to supplement ISO 26262 

for automotive systems, specifically with AI/ML in mind. 

Critical Systems Labs (CSL) believes that its guidance is 

equally relevant to other sectors, including aerospace, rail, 

process industries, and others. 

For instance, both IEC 61508 and EN 50128 (rail) 

mention AI only in the context of fault correction. EN 50128 

Annex D.1 states that “Artificial Intelligence Fault 

Correction” may support forecasting, correction, 

maintenance, and supervisory actions when rules are derived 

directly from specifications [1]. This reflects an earlier, 

deterministic view of AI, not today’s probabilistic ML 

models. In their latest versions (IEC 61508:2010 and EN 

50128:2020), neither standard addresses probabilistic AI/ML 

approaches, instead limiting “AI” to specification-driven 

deterministic systems such as lookup tables.  

Similarly, ISO 26262 (automotive), IEC 61511 (process), 

and DO-178C (aerospace) contain no references to AI or ML 

systems. DO-178C, for example, assumes deterministic 

software, emphasizing requirements-based testing, structural 

coverage, partitioning, and configuration management, but 

not probabilistic or data-driven AI/ML behavior.  

Adapting ISO/PAS 8800’s provisions can provide an 

interim framework for AI/ML assurance until AI/ML-

specific standards are created. IEC 61508 allows for justified 

customization of the software safety lifecycle, for example, 

by stating: “Any customization of the software safety lifecycle 

shall be justified on the basis of functional safety.” CSL 

views ISO/PAS 8800 as a valid reference for such 

customization in AI/ML contexts. This applies across 

lifecycle phases, including:  

• Evaluating AI/ML use in design, 

• Selecting training data,  

• Defining requirements, 

• Mitigating AI/ML-specific risks,  

• Building assurance cases, and 

• Managing lifecycle impacts. 

Overall, this approach is intended to create a robust 

argument for the use of AI/ML and that safety considerations 

are adequately considered. As per IEC 61508, “The 

specification of the requirements for safety-related software 

shall be sufficiently detailed to allow the design and 

implementation to achieve the required safety integrity …, 

and to allow an assessment of functional safety to be carried 

out.” 

The practical takeaway is clear: organizations should 

understand the specific modifications required when AI/ML 

is introduced and employ mitigation strategies that make 

those mitigations actionable.  

II. AI/ML SAFETY ASSURANCE CASE(S) 

A major addition in ISO/PAS 8800 is the explicit 

requirement for an AI/ML safety assurance case. Such cases 

must be comprehensive, at a system-level, and kept current 

as either the AI/ML system or its environment changes. 

ISO/PAS 8800 emphasizes the importance of safety 

assurance cases for AI/ML systems and outlines structured 

approaches in its sections on “Assurance arguments for AI 

systems” and “Safety analysis of AI systems” [2]. These are 

not merely optional guidance; instead, they are critical tools 

for coordinating safety analysis, organizing testing activities, 

and assembling evidence to demonstrate that risk posed by 

AI/ML systems is acceptably mitigated. A structured safety 
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assurance case not only organizes evidence into a coherent, 

accessible form but also captures the logical reasoning that 

supports (or challenges) the adequacy of that evidence. This 

makes it easier to identify and address risks or design gaps 

that could otherwise go unnoticed. Smaller, component-level 

assurance cases can be created for individual AI/ML elements 

when a “bottom-up” approach to system safety is taken. 

Building AI assurance case(s) are expected to 

complement or be in lieu of other safety analysis techniques 

such as FTA, FMEA, STPA, ETA, Bayesian networks, or 

HAZOP. 

Two strategies generally exist for demonstrating that a 

system using AI/ML is safe: bottom-up and top-down.  

• Bottom-up approach: AI/ML is treated as one 

component within a larger system. Assurance is 

established as usual for the non-AI/ML portions, 

while additional evidence is provided for 

AI/ML-specific gaps. This approach is 

especially effective when retrofitting existing 

systems with AI/ML, where only limited 

functionality is allocated to it. The argument 

focuses on ensuring that the AI/ML component 

does not degrade overall system safety.  

• Top-down approach: The entire system is 

treated as an AI/ML-enabled system. Because 

conventional standards lack prescriptive detail 

for AI/ML, ISO/PAS 8800 concepts must be 

used to supplement them. Unlike the bottom-up 

approach, this strategy reframes system safety 

from a new perspective rather than retrofitting 

piecemeal.  

DO-178C reflects a similar concept to our top-down 

approach in its treatment of software levels: “If partitioning 

and independence between software components cannot be 

demonstrated, the software components should be viewed as 

a single software component when assigning software 

levels…” 

Regardless of approach, effective assurance requires 

structured argumentation, such as Goal-Structuring Notation 

(GSN) or Eliminative Argumentation (EA). These 

frameworks capture safety activities, justifications, and 

evidence in a logical and traceable form, directly linked to 

lifecycle requirements.  

III. AI/ML SAFETY ASSURANCE CASE APPROACH 

It is important that a suitable style of safety assurance case 

is selected. The safety assurance case should be targeted 

towards an overall purpose and the expected audience. 

For example, one assurance case argument might be to 

argue that the AI/ML system is at least X times safer than an 

equivalent non-AI/ML system. Another might be to argue 

that each of the AI/ML-specific safety requirements are met. 

Yet another might argue that the AI/ML component meets the 

intent of each clause within a relevant standard. Each of these 

examples might be better suited for certain audiences, e.g., 

internal engineering groups, management, verification and 

validation (V&V) groups, investors, and/or regulatory 

authorities. 

Additionally, the selection of a top-down vs bottom-up 

approach, scope (e.g., software and/or hardware; the 

inclusion of cybersecurity), etc., might also lead to different 

approaches. 

For example, if the intent is to seek approval from a 

regulatory authority, structuring the assurance case in a way 

that is familiar to them is expected to be beneficial. 

Additionally, pre-empting the regulatory authority’s possible 

questions with the addition of “doubts” within the assurance 

case might also be beneficial to demonstrate confidence that 

risks have been adequately mitigated.  

A suitable alternative strategy might be to argue that each 

AI/ML safety requirement is fulfilled and/or to argue that the 

intent of a relevant standard is met.  

The use of a Safety Assurance Case to organize evidence 

(e.g., test reports) into a consistent and logical argument is 

often effective is often beneficial for seeking approval by 

regulatory authorities. 

CSL provides additional guidance in another recent 

whitepaper titled “Towards an ISO/PAS 8800:2024 

Compliant Assurance Argument: Assurance Case 

Development for AI and ML”, which delves deeper into 

software recommendations for an assurance case, and how 

software-based tooling can aid in the creation of ISO/PAS 

8800 assurance cases. This includes topics such as 

embedding evidence and Key Performance Indicators (KPIs) 

within the assurance case, stakeholder involvement and 

reviews, issue tracking, change management, semi-

automated report generation, argument searching and 

filtering, and others [3]. 

IV. KEY ISO 8800 AI/ML ADDITIONS 

ISO 8800 addresses additional AI/ML gaps present in 

regulatory frameworks that were not designed with these 

technologies in mind. Key topics include the selection of 

AI/ML training data, the creation of AI/ML-specific 

statistical-based requirements, mitigations for when AI/ML 

produces unsafe outputs, the use of a safety assurance case, 

and management of the AI/ML component’s lifecycle. 

In more depth, CSL has identified the following six gaps 

that ISO 8800 provides guidance on mitigating: 

1. The outputs of the system may be based on 

probability (e.g., ML models) rather than being 

deterministic (i.e., conventional software), 

2. The quality and selection of training data play a 

substantial role in the output of the system, 

3. New or modified traceability methods might need to 

be used, 

4. Changes might occur over time to AI/ML 

components (e.g., dynamic ML models) and/or their 

operating environment,  

5. Failure modes of an AI/ML system differ from those 

of a non-AI/ML system, and 

6. An AI/ML model might influence non-AI/ML 

components of a system. 

The following six sections each discuss specific potential 

mitigations for the above six gaps respectively. It should be 

noted that this does not constitute a complete list of risks nor 

mitigations, and exact risks and mitigations will vary from 

system to system. These concepts build upon ideas 

introduced in CSL’s earlier work, “Closing the Gap Between 

IEC 61511 and the Use of Artificial Intelligence in Plant 

Safety” [4], but are extended and reframed to highlight their 
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broader applicability across industries through the lens of 

ISO/PAS 8800.  

A. Probabilistic Outputs from AI/ML Systems 

Unlike conventional software, which typically produces 

deterministic outputs, AI/ML systems often generate results 

probabilistically. This means that the same input can, under 

certain conditions, lead to different outputs, including 

unexpected ones. Such variability contrasts sharply with the 

logical rule-based behavior of traditional code-centric 

systems.  

ISO/PAS 8800 addresses this by introducing AI/ML-

specific safety requirements. These requirements are framed 

similarly to conventional requirements but are expressed in 

probabilistic terms. For instance, an AI system may be 

required to achieve an uncertainty rate no greater than 1e-6, 

with statistical confidence demonstrated through significance 

testing (e.g., p-values). This shift explicitly acknowledges 

that acceptable safety in AI/ML cannot always be defined in 

absolute terms but must often be specified probabilistically 

[1]. 

This marks a departure from conventional standards. DO-

178C, for example, assumes determinism from the system 

rather than probabilistic outputs, as demonstrated by Section 

6.4.2 of the standard requiring “normal range and robustness 

test cases,” and Section 6.4.4.2 specifying “structural 

coverage analysis” to ensure complete test coverage [5]. EN 

50128 adopts a similar stance, requiring repeatable behavior 

against specifications, e.g., as shown in Sections 6.1.1 and 

6.1.4.5 [1]. ISO 26262 Part 6, Section 6, also mandates 

explicit software safety requirements but does not account for 

probabilistic outputs. ISO/PAS 8800 extends these 

frameworks by explicitly including probabilistic 

requirements.  

Given the difficulty of fully enumerating AI/ML 

requirements, particularly in high-dimensional spaces, 

alternative techniques are needed. Metamorphic relations can 

formalize expected transformations in input-output behavior, 

while metamorphic testing systematically validates that these 

relationships hold under varied conditions [3]. 

Even with probabilistic requirements in place, unsafe 

outputs may still occur, though at low probability. ISO/PAS 

8800 suggests bridging this gap through logical reasoning 

and safety arguments that demonstrate how unsafe outputs 

are prevented from propagating into unsafe system states. 

Mitigation measures include:  

• Safety supervisors that detect anomalies (e.g., 

out-of-bound values, excessively rapid changes, 

or inconsistencies with other systems), and 

• Ensemble methods, where conventional 

algorithms operate alongside AI/ML 

components to reduce risk exposure.  

Together, these approaches provide a structured way to 

manage the inherent variability of AI/ML systems.  

B. Quality and Selection of Training Data 

Probabilistic outputs make the role of training data 

especially critical. The quality of an AI/ML system’s 

behavior is directly tied to the precision, robustness, and 

representativeness of its datasets.  

ISO/PAS 8800 fills an important gap by requiring 

systematic dataset management. This includes defining 

dataset requirements, designing datasets, implementing and 

verifying datasets, validating representativeness, testing 

dataset adequacy, and managing datasets throughout the 

lifecycle [1]. Attributes such as accuracy, completeness, 

independence, temporality, traceability, and verifiability 

must all be considered to ensure robust outputs.  

Conventional standards give little attention to training 

data. As per Sections 2.5.1 and 11.22 of DO-178C, the 

standard addresses only “Parameter Data Items” that are 

static, e.g., controlled datasets like lookup tables. While the 

standard requires configuration management, it does not 

address training data representativeness or completeness [5]. 

In Sections 6.5.4.14-17, EN 50128 emphasizes traceability 

but similarly omits dataset governance. ISO/PAS 8800 

expands into this unaddressed area, aligning dataset 

management with safety-critical needs.  

By recognizing data as a first-class safety artifact, 

ISO/PAS 8800 ensures that probabilistic system behavior is 

not left to chance but is grounded in well-specified and 

managed training processes.  

C. Traceability for AI/ML Systems 

If data quality determines the foundation of AI/ML 

behavior, traceability provides the structure needed to ensure 

safety arguments remain defensible. Traceability links high-

level safety requirements through design, implementation, 

testing, and maintenance. 

Conventional standards already require strong 

traceability. In Sections 5.5. and 11.21, DO-178C mandates 

bidirectional links between requirements, design, code, and 

verification results. ISO 26262, Part 8, Section 13.4.3.5.1, 

requires test-to-requirement traceability. EN 50128 defines 

traceability as “the ability to establish relationships among 

development products, and mandates it across requirements, 

design, implementation and testing” [6]. However, all of 

these standards stop short of datasets. ISO/PAS 8800 closes 

this gap by explicitly extending traceability to training data. 

This ensures that AI/ML safety requirements can be traced 

backward to the datasets that support them and forward to the 

evidence proving their satisfaction.  

Consider an AI/ML-based safety requirement that 

requires the AI/ML system to detect and report anomalous 

vibrations within a mechanical system. If the training dataset 

lacks similar instances of anomalous vibrations, a traceability 

review considering AI/ML components should expose the 

gap, prompting corrective actions and adjustments to the 

dataset, such as the addition of suitable simulated or real-

world anomalous vibrations. By linking dataset requirements 

directly to safety requirements, ISO/PAS 8800 ensures that 

critical behaviors are adequately represented and tested. 

D. The Dynamic Nature of AI/ML Systems 

Conventional safety standards assume systems remain 

static until deliberately modified. AI/ML challenges this 

assumption. Models may drift over time due to environmental 

changes, evolving input distributions, component 

replacements, or shifts in usage patterns. These dynamics can 

degrade performance relative to the validated baseline.  

ISO/PAS 8800 addresses this by requiring proactive 

monitoring and lifecycle management. Safety assurance must 

account not only for initial validation but also for ongoing 

performance under real-world conditions. Monitoring 



mechanisms can detect when operational inputs diverge from 

training distributions, while continuous reassessment ensures 

prior safety arguments remain valid [1].  

Conventional standards provide partial parallels. As per 

Sections 7.0 and 12.1, DO-178C mandates safety features to 

manage erroneous inputs and assumes tightly controlled 

software [5]. EN 50128 requires that any change or 

enhancement triggers a safety impact analysis, and, in 

accordance with Sections 6.6.4.2 and 9.2.4.19, those impacts 

must be addressed by returning to the appropriate lifecycle 

phase and reapplying all subsequent processes, effectively 

treating the system as static until it is formally requalified. 

Neither standard anticipates naturally evolving AI/ML 

models. IEC 61508 offers more relevant provisions, requiring 

operational procedures to be updated based on audits and 

tests, hazard analyses for modifications, and functional 

testing under environmental conditions. ISO/PAS 8800 

extends these concepts to environments that shift in 

unforeseen ways, for example, new vehicle types in 

automotive or new lighting conditions in rail systems.  

In short, ISO/PAS 8800 reframes lifecycle assurance to 

treat change as inherent rather than exceptional in AI/ML 

systems. 

E. AI/ML-Specific Failure Modes 

AI/ML systems often have unique failure modes 

compared to non-AI/ML systems. In conventional (i.e., non-

AI/ML) systems, the transformation from input to output is 

typically governed by explicit, human-readable logic, 

allowing engineers to clearly see which input conditions 

produce specific outputs. By contrast, AI/ML systems, 

particularly those using neural networks, often lack this high 

level of interpretability for two key reasons. First, their input–

output mapping is defined by highly complex, high-

dimensional, and potentially non-linear mathematical 

relationships, making it difficult for a human to mentally 

trace cause and effect. Second, the learned internal 

representations do not necessarily correspond to human-

understandable concepts, meaning there is no clear human-

interpretable link between the input features and the model’s 

decision process. Together, these factors make it harder to 

predict or explain AI/ML behavior, which can lead to 

unexpected or non-intuitive failure modes. 

At a high level, standard testing methods such as 

component and integration tests using pass/fail criteria are 

still broadly applicable [2]. The main difference is that 

AI/ML system testing will often use alternative testing 

methods within these high-level testing categories to gain 

confidence in the system’s safety. For conventional software 

for automotive applications, ISO 26262 provides common 

verification and testing methods within Part 11, Section 10, 

including static code analysis, requirements-based tests, 

interface tests, etc. 

Methods for testing AI/ML systems can include a range 

of different approaches, such as statistical testing, 

metamorphic testing, K-way combinatorial testing, gradient-

based search methods, synthetic test case generation, expert 

knowledge-based testing, adversarial testing, and robustness 

testing [2]. For example, DO-178C requires the use of 

robustness test cases in Section 6.4.2.2 of the standard, 

although these test cases would need to be expanded for 

AI/ML-specific systems. In CSL’s experience, metamorphic 

testing, K-way combinatorial testing, and expert knowledge-

based testing have proven effective for AI/ML system safety 

analysis [7] [8]. 

DO-178C also acknowledges complexity in failure 

progression, e.g., as per Section 2.3.1 which states that “a 

software error may be latent…” and that “…the sequence of 

events that leads from a software error to a failure condition 

may be complex…” [5]. These provisions address 

deterministic failures but not opaque AI/ML failure modes. 

ISO 8800 extends this coverage to emergent ML-specific 

failures [2]. 

In Section 3.1.10, EN 50128 defines failure 

deterministically as the loss of ability to perform as required 

and provides deterministic fault/error definitions in Sections 

3.1.51-52. While Annex D lists techniques such as formal 

methods, control flow analysis, and inspections, these are 

suited to deterministic software. Annex D.1 references AI 

Fault Correction only in the sense of specification-driven 

fault forecasting and correction, not probabilistic ML. 

ISO/PAS 8800 extends these frameworks by explicitly 

considering emergent AI/ML-specific failure modes.  

F. Influence of AI/ML Systems on Non-AI/ML Components 

A critical concern when introducing AI/ML is its potential 

influence on interconnected non-AI/ML (or other AI/ML) 

components. Because these interactions can create cascading 

risks, understanding and managing interconnections is 

essential. A clear system definition, detailing AI/ML 

functionality interfaces (inputs and outputs), and 

requirements, provides the foundation for assessing such 

interactions.  

Architectural mitigations, particularly isolation strategies, 

are central to reducing unintended impacts. Conventional 

standards already recognize this need. For example, DO-

178C explicitly requires partitioning to ensure that “a 

partitioned software component should not be allowed to 

contaminate another partitioned software component’s code, 

input/output (I/O), or data storage areas.” It also emphasizes 

the importance of monitoring, noting that “safety monitoring 

is a means of protecting against specific failure conditions by 

directly monitoring a function for failures that would result 

in a failure condition. Monitoring functions may be 

implemented in hardware, software, or a combination of 

hardware and software.” These principles align closely with 

ISO/PAS 8800’s architectural recommendations, although 

DO-178C applies only to deterministic systems. 

Confidence in AI/ML integration can be further enhanced 

through rigorous verification and validation activities, 

including both virtual and physical testing [1]. 

Complementary frameworks such as AI Safety Integrity 

Levels (AI-SIL) from CSL’s “Safety Integrity Levels for 

Artificial Intelligence” white paper [5] also provide guidance. 

AI-SIL links the entropy of inputs and the non-determinism 

of outputs to the level of assurance rigor required, helping 

organizations determine how much scrutiny is necessary for 

AI/ML components. Input entropy considers the complexity 

of inputs to the system. For example, a system that’s only 

input is a single sensor’s reading (e.g., water level in a tank) 

would be a lower-entropy input, whereas camera data which 

contains a matrix of pixel intensity values (especially when 

combined with lidar and radar data) would be a higher-

entropy input. Similarly, non-determinism assesses the size 
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and variability of an AI-based function’s output space. For 

example, a binary classification algorithm that’s only output 

is a true/false value of if a pedestrian is detected by an 

autonomous vehicle would be lower non-determinism, 

whereas a planned future route of an autonomous vehicle’s 

trajectory would be a higher non-determinism. 

Other industry standards provide parallel guidance with 

respect to the influence of AI/ML systems on other systems. 

EN 50128 requires software and hardware integration testing 

to demonstrate correct interactions, as per Section 7.6.1, and 

mandates that generic software be rigidly separated from 

application algorithms [1]. However, it does not anticipate the 

probabilistic influence of AI/ML models on deterministic 

components.  

IEC 61508 makes the case for explicit separation at the 

system level: “In the specification, it should be decided 

whether a separation of the safety-related systems and non-

safety-related systems is possible. Clear specifications should 

be written for the interfacing of the two parts. A clear 

separation reduces the effort for testing the safety-related 

systems.” This statement is directly applicable when 

integration of AI/ML systems with non-AI/ML and other 

systems, underscoring the importance of strong architectural 

boundaries.  

V. CONCLUSION 

This paper has outlined how ISO/PAS 8800 can 

supplement existing conventional safety standards by 

providing a practical roadmap that addresses aspects not 

covered in current conventional standard frameworks. Its 

purpose has been to identify key considerations that arise 

with the use of AI/ML systems and to demonstrate how these 

can be argued in a way that remains defensible to independent 

assessors.  

At a high level, the paper emphasizes the need to define 

AI/ML-specific safety requirements and to establish 

guidance for managing issues not considered in conventional 

standards. This ensures that safety assurance is maintained 

across the full lifecycle of AI/ML systems from initial design, 

through development, and into ongoing operation as either 

the system or its environment evolves. 

Additionally, ISO/PAS 8800 requires the addition of an 

AI/ML safety assurance case. This paper provides a brief 

introduction into potential structures and topics to consider, 

when creating such a safety assurance case. This includes 

introduction into the top-down vs bottom-up approach, the 

need to tailor the case to the audience, and tips such as the 

inclusion of arguing doubts pre-emptively and organizing test 

evidence to provide key stakeholders with confidence that 

risks have been adequately mitigated and concerns have been 

adequately addressed. 

Other relevant CSL papers were also referenced for 

additional specific information, such as: 

• “Towards an ISO/PAS 8800:2024 Compliant 

Assurance Argument: Assurance Case 

Development for AI and ML Systems” 

• “Safety Integrity Levels for Artificial 

Intelligence”. 

Taken together, these methods offer organizations a 

strategy for adapting established industry safety standards to 

AI/ML. While DO-178C, IEC 61508, and ISO 26262 provide 

partial parallels in areas such as robustness testing, fault 

tolerance, partitioning, and monitoring, ISO/PAS 8800 

extends these principles to address the distinct challenges of 

probabilistic outputs, dataset quality, dataset traceability, 

dynamic model evolution and non-deterministic failure 

modes. Similarly, EN 50128 reinforces lifecycle discipline 

and traceability but does not address these AI/ML-specific 

issues. In doing so, ISO/PAS 8800 fills critical gaps and 

establishes a path for the safe integration of AI/ML into 

safety-critical domains.  
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