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Abstract— There is an urgent need to reconcile the 
established best practices of functional safety and requirements 
of applicable safety standards, such as IEC 61511, with the 
increasing use of Machine Learning (ML) and other forms of 
Artificial Intelligence (AI).  Possible uses of AI/ML in plant 
automation are motivated by a variety of objectives such as 
improving safety monitoring, optimizing production and 
reducing human supervision.  Most applications of AI in this 
context unavoidably involve some measure of uncertainty.  
Traditional methods and measures for managing safety risk, 
such as those embodied in IEC 61511, are not necessarily helpful 
for addressing this inherent uncertainty.  Other industries such 
as advanced automotive have taken steps to close the gap 
between functional safety and AI/ML safety – for example, the 
recent publication of ISO/PAS 8800. A key part of this strategy 
is recognizing (in the words of ISO/PAS 8800) that with the use 
of AI/ML “it is not possible to provide detailed requirements on 
the process or product characteristics required to achieve an 
acceptably low level of residual risk associated with the use of 
AI systems”. Instead, closing the gap between functional safety 
and AI/ML safety requires assurance argumentation, ideally, in 
the form of a structured argument that captures the critical 
thinking that links safety claims to supporting evidence. This 
paper describes strategies for adapting conventional hazard and 
risk assessment methods to take account of AI/ML in SIL 
determination.  This paper also explains how safety assurance 
argumentation can be combined with conventional functional 
safety to close the gap between IEC 61511 and the use of AI/ML 
in an industrial setting. 
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I. INTRODUCTION 

Artificial Intelligence and Machine Learning (AI/ML) are 
increasingly being considered for tasks that touch safety, such 
as pattern detection, anomaly recognition, diagnostics, and 
decision support. Yet organizations responsible for Safety 
Instrumented Systems (SIS) rightly conform their practices to 
IEC 61511, a standard built around deterministic behavior, 
static configurations, and evidence gathered through 
conventional verification and validation (V&V) efforts. The 
tension is obvious: AI/ML promises capability where 
deterministic methods might struggle, but it also introduces 
uncertainty and new failure modes that traditional process-
sector guidance does not address specifically. In this paper, 
“AI/ML” refers to models whose behavior can be 

probabilistic and whose outputs are shaped by training data 
rather than fixed logic.  

This paper is written from the perspective of practitioners 
who live at the intersection of AI/ML-enabled functionality 
and the traditional principles that constrain the design and 
implementation of an IEC 61511-compliant SIS. Our purpose 
in this paper is not to promote AI everywhere, nor to 
downplay regulatory obligations. Instead, we aim to help 
safety leaders decide when AI/ML is warranted, where it can 
be utilized without undermining confidence in the safety of a 
system, and how to assemble objective evidence that will 
stand up to independent assessment.  

In this paper, we take a deliberately pragmatic stance. 
First, we outline decision criteria for selecting AI/ML only 
when conventional approaches are insufficient and when the 
organization can realistically develop, verify, validate, and 
maintain the model over time (Section II). Second, we 
characterize the specific mismatches between IEC 61511’s 
expectations and the realities of AI/ML; mismatches that, if 
ignored, derail compliance efforts and erode confidence 
(Section III). Third, we propose mitigation strategies that 
preserve the spirit and objectives of IEC 61511 while 
bringing in additional lifecycle activities and evidence 
patterns that have emerged from adjacent safety work on AI 
systems (Section IV).  

Two integration approaches are considered. The bottom-
up approach confines AI/ML to well-bounded components 
placed alongside deterministic SIS components and develops 
component-level assurance cases as part of the overall system 
safety case. The top-down approach treats the system 
holistically and uses structured assurance arguments to 
demonstrate that residual risk is acceptably low. Neither 
approach simply “copies-pastes” practices from other 
domains. Both emphasize clear requirements, defined 
operating conditions, architectural separation and 
monitoring, disciplined data management, and a repeatable 
method for arguing safety claims with supporting evidence. 

A recurring theme is transparency about what the AI/ML 
model  can and cannot do, how it was trained and tested, how 
it is monitored in operation, and how changes are controlled. 
When system behavior is probabilistic rather than strictly 
deterministic, assurance shifts from demonstrating via 
conventional V&V that all software requirements are 
satisfied to bounding risk to an acceptable level and 
demonstrating that controls are effective. That does not relax 



expectations – it changes the evidence you must produce and 
the way you organize that evidence.  

The intended takeaway is practical: readers should come 
away with a structured way to decide if AI/ML belongs in 
their SIS context, a clear view of the standard-driven gaps 
they must address to remain compliant with IEC 61511, and 
a set of mitigation patterns that turn those gaps into an 
actionable engineering plan.  

II. CONSIDERATIONS FOR THE USE OF AI/ML 

When choosing to use an AI/ML solution for a particular 
functionality of your system, this must be the result of a 
deliberate and justified decision made after establishing that 
the use of AI/ML is acceptable. Such a decision must be 
clearly documented and defensible to independent assessors 
as an approach that is warranted and that can meet safety 
expectations. 

To make such a decision in a structured and defensible 
manner, several factors should be assessed. The functionality 
must be precisely scoped, with a clear rationale for selecting 
AI/ML over conventional deterministic methods, either 
because deterministic approaches cannot feasibly achieve the 
required objectives (e.g., performance, scalability, or 
adaptability to highly variable environments), or because the 
nature of the problem makes it prohibitively complex to define 
the correct output in advance. Such complexity could arise in 
high-dimensional contexts where the number of interacting 
variables is too great for explicit specification, yet an AI/ML 
model can learn to produce acceptable outputs from 
representative data (e.g., vision-based monitoring). AI/ML 
should be selected only when its safety can be assured to an 
acceptable level and when its benefits outweigh the added 
risks and assurance effort it introduces. 

Feasibility must be established by confirming that 
sufficient, high-quality data is available and that the effort to 
develop, verify, and validate the model is practical for your 
organization. This will require well-thought-out performance 
and validation criteria which are, in general, difficult to 
identify for AI/ML systems that often fail in ways that are less 
predictable and less intuitive than traditional systems, which 
makes targeted testing and assurance activities more complex. 

During design and development, it is critical to identify the 
system’s safe states and ensure the AI/ML component is 
architecturally isolated or monitored to prevent faults from 
compromising critical safety functions. Defining appropriate 
human oversight is also essential, considering the difficulty of 
maintaining vigilance when operators interact with well-
functioning automated systems. Finally, upon deployment, a 
comprehensive plan must be in place for ongoing monitoring, 
maintenance, and model updates. 

To identify what needs to be done and determine the 
appropriate level of rigor when introducing AI/ML to SIS, the 
AI Safety Integrity Level (AI-SIL) framework [1] can be 
used; it offers a quantitative approach to assess whether an 
AI/ML solution is acceptable. This framework extends 
traditional safety integrity levels by integrating specific 
metrics for AI-enabled systems into the SIL level 
computation. This approach tailored for AI/ML components 
supports the elicitation of the assurance activities necessary 

to generate objective evidence demonstrating to independent 
assessor that safety expectations have been met. 

III. IDENTIFYING GAPS IN IEC 61511  

Despite the growing interest in integrating AI/ML 
components into SIS, the path to doing so safely is obstructed 
by regulatory frameworks that were not designed with these 
technologies in mind. IEC 61511, the prevailing process 
sector functional safety standard, emphasizes deterministic 
logic, static configurations, and fully specifiable behaviors 
[2]. This concept underpins most of the standard’s validation 
and verification expectations, yet it becomes problematic 
when applied to AI/ML models whose behavior can be 
inherently probabilistic and whose outputs are shaped by 
training data rather than fixed logic. While traditional 
systems rely on requirements-based testing, AI/ML 
components introduce concerns such as adversarial failure 
modes, input/output and functional insufficiencies, 
uncertainty across the input space, complex training datasets, 
and overall model robustness [3], none of which are 
addressed in IEC 61511. 

Another critical omission is the lack of data-centric 
development lifecycle in IEC 61511. In AI/ML-Based 
systems, data is not just an input; it is part of the 
implementation. The properties, limitations, and biases of the 
training dataset directly affect safety outcomes. However, 
IEC 61511 provides no guidance for dataset specification, 
curation, coverage analysis, or traceability from training data 
to safety requirements, all of which are necessary for 
justifying the use of AI/ML within safety functions. IEC 
61511 focuses on verification of software code and 
traceability to safety requirement specifications (SRS) and 
the only mention of datasets discusses data integrity and data 
order,  which is of a different context, focused on input/output 
data rather than training data used during AI/ML 
development [2].  

IEC 61511 also assumes that safety configurations are 
fixed once deployed, with any modifications controlled 
solely through Management-of-Change (MoC) procedures 
[2]. ISO/PAS 8800, by contrast, treats an AI-enabled systems  
as requiring continuous monitoring and calibration, i.e., it 
mandates run-time performance monitoring, drift detection, 
and clearly defined triggers for model retraining or rollback, 
all supported by evidence that each update preserves the 
existing safety argument [3]. 

Furthermore, IEC 61511’s notion of failure, centered on 
common cause failures, hardware faults, and systematic 
design errors, is not sufficient to capture the broader range of 
failure modes associated with AI/ML systems [2]. These 
include systematic design errors such as performance 
insufficiencies, specification gaps, out-of-distribution (OOD) 
behavior, and silent degradation over time due to changes in 
the operating environment [3]. If these risks are not explicitly 
acknowledged and mitigated, the resulting safety argument 
will be fundamentally incomplete. 

The integration of AI/ML also challenges the technology 
bias of IEC 61511, particularly when considering the use of 
trained models within or adjacent to the logic solver. The 
standard explicitly prohibits the use of artificial intelligence 
within SIL 2+ logic [2]. This raises practical questions about 
how to isolate, monitor, or otherwise control AI/ML 



components so that they do not compromise certified 
elements of the SIS.  

Perhaps most importantly, IEC 61511 provides no 
structured approach for arguing safety in the presence of 
AI/ML. It prescribes documentation and validation 
requirements but lacks the scaffolding for structured safety 
argumentation that is increasingly necessary when dealing 
with AI-enabled systems [3]. Without such an approach, 
safety argumentations involving AI/ML risk become ad hoc, 
inconsistent, or unconvincing to regulators and independent 
assessors.  

In short, IEC 61511 gives us a solid foundation for 
deterministic SIS design, but it leaves material blind spots 
namely data-centric development, post-deployment 
evolution, AI-specific failure modes, probabilistic behavior, 
and evidence-based structured argumentation, that become 
showstoppers once AI/ML enters the loop. ISO/PAS 8800 
demonstrates that each gap can be closed with additional 
lifecycle activities, datasets, monitoring strategies and 
structured assurance cases, yet those practices must be 
adapted, not copied, into the process-sector context. The next 
section therefore turns from diagnosis to prescription: we 
outline concrete mitigation strategies, mapped to each gap, 
that preserve IEC 61511 compliance while enabling 
organizations to reap the benefits of AI/ML under a 
disciplined, defensible safety regime. 

IV. BRIDGING THE GAPS 

Currently, using AI/ML in systems that would typically 
conform with IEC 61511 might render the entire system non-
compliant with IEC 61511. In general, there are two 
strategies for arguing that a system using AI/ML could be 
compliant with IEC 61511. 

The first is a “bottom-up” approach, where AI/ML 
software is treated as a component of a larger system. In this 
approach, IEC 61511 compliance is argued as normal for the 
non-AI/ML portion of the system, leaving a remaining gap 
for AI/ML components. To fill this gap, one must detail 
equivalent means to demonstrate that the objectives of IEC 
61511 are satisfied for AI/ML components using alternate 
means.  This strategy works best for non-AI/ML systems to 
be retrofitted with an AI/ML component, where only a small 
portion of the system’s functionality is allocated to AI/ML. 
This bottom-up approach focuses the safety argument on the 
safety of AI/ML components being retrofitted and supports 
the top claim that the integration of the AI/ML component 
within the greater SIS does not degrade the overall safety of 
the system.  

The second strategy is a “top-down” approach. This 
approach treats the entire system as an AI/ML system.  As 
IEC 61511 is not prescriptive enough with respect to AI/ML 
components, other similar standards must be used: e.g., 
adapting ISO/PAS 8800 for use with the system. This top-
down approach argues that the entire system is safe for use 
using IEC 61511 principles augmented by ISO/PAS 8800 
requirements.  The key difference between the two strategies 
is that the “top-down approach” rethinks safety from a new 
viewpoint, rather than attempting to retrofit existing methods 
in a more piecemeal way. 

Effective argumentation for the safety of either approach 
can be accomplished by creating a structured argumentation 
(e.g., Goal-Structuring Notation (GSN) or Eliminative 

Argumentation (EA)) where the safety engineering activities 
along with their justifications and resulting evidence can be 
captured in a structured, logical manner and traced to 
lifecycle requirements. 

Regardless of the approach chosen, the following six gaps 
with IEC 61511 must be considered when AI/ML is used 
within a system described above, namely with respect to 
demonstrating safety of a system where: 

1. The outputs of the system may be based on 
probability (e.g., ML models) rather than being 
deterministic (i.e., conventional software), 

2. The quality and selection of training data plays a 
substantial role in the output of the system, 

3. New or modified traceability methods might need to 
be used, 

4. Changes may occur over time to AI/ML components 
(e.g., dynamic ML models) and/or their operating 
environment,  

5. Failure modes of an AI/ML system differ from those 
of a non-AI/ML system, and 

6. An AI/ML model might influence non-AI/ML 
components of a system. 

The following six sections each discuss specific potential 
mitigations for the above six gaps respectively. It should be 
noted that this does not constitute a complete list of risks nor 
mitigations, and exact risks and mitigations will vary from 
system to system. 

A. Probabilistic Outputs from AI/ML Systems 

Many AI/ML systems can produce results based on a 
probabilistic approach.  Due to this, the AI/ML system might 
produce unexpected outputs given certain input parameters, 
especially when compared to non-AI/ML systems, which in 
general are following more logical and code-centric 
approaches. 

To handle the probabilistic nature of certain AI/ML 
systems, specific “AI/ML safety requirements” can provide 
the structure framed by normal requirements for non-AI/ML 
systems, but instead for AI/ML systems that might not always 
produce acceptably safe results.  These AI/ML-based safety 
requirements can be probabilistic-based requirements [3], 
where their acceptability is expressed in the form of 
probabilities (e.g., the AI system produces safe results with 
an uncertainty rate of 1e-6), and their outputs are 
demonstrated to meet a certain level of statistical confidence 
(e.g., statistical significance; p-values).  

Given the difficulty of defining fully enumerated 
requirements for AI/ML, particularly in high-dimensional 
problem spaces, metamorphic relationships can be specified 
to formalize expected transformations in input/output 
behavior. Metamorphic testing can then be used to 
systematically validate that these constraints hold under 
varied conditions [4]. 
Using AI/ML safety requirements might still allow for unsafe 
outputs, albeit at a probabilistically low rate. Logical 
reasoning or argumentation can fill this gap, and be 
constructed to account for such edge cases, etc. [3]. Logical 
argumentation can be constructed to provide evidence to 
support a claim that even if the AI/ML system produces a 
directly unsafe result, the unsafe result will not propagate to 



unsafe situation. For example, the use of a safety supervisor 
system can detect certain unsafe situations, e.g., out-of-bound 
values, outputs that change too quickly, or outputs that are 
inconsistent with other systems. Additionally, other methods 
such as ensemble methods (e.g., using conventional 
programming methods for one of the ensembled systems) 
could be argued to provide acceptable mitigation of unsafe 
situations. 

Overall, evaluation methods exist that can be used to 
evaluate the impact of AI errors, leading to other potential 
mitigation methods. 

B. Quality and Selection of Training Data 

For many AI/ML systems, the quality of the system’s 
outputs is dependent on the quality of the training data used. 
In this context, “quality” is used in place of various positive 
attributes of an AI/ML system, such as precision, reliability, 
robustness. 

Common issues with datasets can often be mitigated by 
following a systematic process to define and manage datasets 
used throughout the system. This might include steps such as 
creating dataset requirements, designing the contents of the 
dataset, followed by implementing, verifying, validating, 
testing, and then managing the dataset [3]. 

While accomplishing these milestones, certain aspects of 
the dataset should be considered, e.g., accuracy, 
completeness, representativeness, independence of datasets, 
temporality, traceability, verifiability, etc. [3]. Considering 
these aspects, among other relevant dataset attributes, can 
help address many dataset insufficiencies.  

C. Traceability for AI/ML Systems 

Traceability in AI/ML systems refers to the ability to 
establish clear, documented links between each stage of the 
system’s lifecycle, from high-level safety and functional 
requirements, through design and implementation, to 
verification, validation, testing, and maintenance activities. 
This ensures that every requirement can be traced forward to 
evidence showing it has been met and traced backward to the 
design and safety objectives it supports. For AI/ML systems, 
these traceability practices are expected to be largely 
consistent with those of non-AI/ML systems.  

Where applicable, AI/ML systems also require 
traceability to be extended back to the actual training data 
used [3]. As mentioned above, the quality and selection of 
training data can directly affect system performance, and as 
such, it is essential to confirm that this data is acceptable and 
properly linked to the relevant AI/ML requirements. For 
example, if an AI/ML requirement specifies detecting 
anomalous vibrations in a mechanical system, but the training 
data contains no instances of anomalous vibrations, a 
traceability review will reveal this gap.  

To accomplish this, dataset requirements should be 
defined in a way that allows them to be directly linked to the 
AI/ML safety requirements. These links can then be used as 
evidence to support that the relevant AI/ML safety 
requirements are met [3]. 

D. The Dynamic Nature of AI/ML Systems 

In general, non-AI/ML systems are approved for a 
specific version that remains static until deliberately changed 
through a formal MoC process [2]. AI/ML systems, however, 

can exhibit dynamic behavior even without explicit updates, 
as their performance may be influenced over time by 
evolving environmental conditions, shifts in input data 
distributions, degradation or replacement of upstream 
components, or changes in system usage patterns. These 
factors can alter the model’s behavior relative to its validated 
state, requiring proactive monitoring and management to 
ensure safety objectives remain valid. 

To mitigate risks associated with this dynamic nature, it 
is essential to first understand the full operational context of 
the AI/ML system. This includes its interfaces with other 
systems and subsystems, the physical environment in which 
it operates, the conditions under which its functionality is 
triggered, the potential for distributional shifts in input data, 
and the model’s behavior under abnormal or degraded 
conditions. 

Changes to conditions are inevitable during the system’s 
operational life, especially over extended periods. These can 
include environmental changes (e.g., temperature, humidity), 
operational shifts caused by maintenance, shutdowns, or 
emergency situations, as well as input data variations 
resulting from component replacements or recalibration of 
related subsystems. In some cases, these changes can be 
mitigated by implementing monitoring mechanisms that 
verify whether incoming data remains consistent with the 
distributions observed during training. 

Ongoing re-evaluation of AI/ML safety requirements and 
supporting evidence is critical for maintaining safety 
throughout the system’s lifecycle. This continuous 
assessment ensures that changes in operating conditions do 
not invalidate prior assurance, and that corrective actions can 
be taken promptly if performance deviates from safety 
expectations [3]. 

E. AI/ML-Specific Failure Modes 

AI/ML systems often have unique failure modes 
compared to non-AI/ML systems. In traditional non-AI/ML 
systems, the transformation from input to output is typically 
governed by explicit, human-readable logic, allowing 
engineers to clearly see which input conditions produce 
specific outputs. By contrast, AI/ML systems, particularly 
those using neural networks, often lack this high level of 
interpretability for two key reasons. First, their input–output 
mapping is defined by highly complex, high-dimensional, 
and non-linear mathematical relationships, making it difficult 
for a human to mentally trace cause and effect. Second, the 
learned internal representations do not necessarily 
correspond to human-understandable concepts, meaning 
there is no clear human-interpretable link between the input 
features and the model’s decision process. Together, these 
factors make it harder to predict or explain AI/ML behavior, 
which can lead to unexpected or non-intuitive failure modes. 

At a high level, standard testing methods such as 
component and integration tests using pass/fail criteria are 
still applicable [3]. The main difference is that AI/ML system 
testing will often use alternative testing methods within these 
high-level testing categories to gain confidence in the 
system’s safety. 

Methods for testing AI/ML systems can include a range 
of approaches, such as statistical testing, metamorphic 
testing, K-way combinatorial testing, gradient-based search 
methods, synthetic test case generation, expert knowledge-



based testing, adversarial testing, and robustness testing [3]. 
In our experience, metamorphic testing, K-way 
combinatorial testing, and expert knowledge-based testing 
have proven effective for AI/ML system safety analysis [4] 
[5]. 

F. Influence of AI/ML Systems on Non-AI/ML Components 

An area of concern when using AI/ML system is its 
potential impact on interconnected non-AI/ML systems.  

To mitigate the likelihood of the AI/ML system affecting 
other non-AI/ML systems, a strong understanding of the 
interconnections is important. Creating an AI/ML system 
definition detailing the system’s functionality, interfaces 
(e.g., inputs and outputs), and requirements is a first step to 
understanding potential interconnections. 

Additionally, implementing sufficient architectural 
mitigations, such as isolation strategies, could reduce the 
impact of AI/ML on interconnected systems. 

AI system integration, verification, and validation testing, 
including the potential for virtual and physical testing [3] help 
increase confidence in the AI/ML system. 

The framework introduced in Safety Integrity levels for 
Artificial Intelligence [1] can help categorize and provide 
high-level guidance on the use of AI/ML systems with 
respect to safety integrity levels (SIL).  This AI-SIL 
framework provides guidance on how two attributes of an 
AI/ML system (entropy of inputs and non-determinism of 
outputs) affect level of rigor for scrutinizing AI/ML systems.  

G. AI/ML Safety Assurance Case(s) 

In addition to the above, it is essential that a full, system-
level, top-down safety assurance case is developed and 
maintained, even if only for internal purposes, and kept 
current as the AI/ML system and/or its operating environment 
evolve. ISO/PAS 8800 stresses the importance of safety 
assurance cases for AI/ML systems and outlines structured 
approaches in its sections on “Assurance arguments for AI 
systems” and “Safety analysis of AI systems” [3]. These are 
not merely optional guidance, they are critical tools for 
coordinating safety analysis, organizing testing activities, and 
assembling evidence to demonstrate that risk from AI/ML 
systems is acceptably mitigated. A structured safety 
assurance case not only organizes evidence into a coherent, 
accessible form but also captures the logical reasoning that 
supports (or challenges) the adequacy of that evidence. This 
makes it easier to identify and address risks or design gaps 
that could otherwise go unnoticed. Smaller, component-level 
assurance cases can be created for individual AI elements 
when a “bottom-up” approach to system safety is taken. 

Building AI assurance case(s) are expected complement 
or work in lieu of other safety analysis techniques such as 
FTA, FMEA, STPA, ETA, Bayesian networks, or HAZOP to 
demonstrate acceptability safety for systems, especially those 
using AI/ML. 

V. CONCLUSION 

This paper responds to the growing demand for AI/ML 
integration within SIS by laying out a practical roadmap for 
doing so responsibly under the discipline of IEC 61511. Its 
purpose is to identify the key considerations that must be 
addressed, to identify coverage gaps of current regulatory 
expectations, and to outline a framework that closes those 

gaps with credible assurance. The aim was not to promote 
AI/ML everywhere, nor to relax obligations, but to show how 
AI/ML can be adopted in ways that remain defensible to 
independent assessors.  

At a high level, the paper frames AI/ML adoption as a 
decision that must be justified against conventional methods 
and proportionate to an organization’s ability to develop, 
verify, validate, deploy, and monitor the technology over 
time. It emphasizes making safety objectives explicit, 
calibrating rigor to risk (e.g., through AI-SIL concepts), and 
plan from the outset for controlled operation and change 
management.  

The analysis contrasted deterministic, code-centric 
expectations with AI/ML’s data-driven, potentially 
probabilistic behavior; captured the implications for 
requirements, datasets, architecture, V&V, and post-
deployment governance, and summarized them as mitigation 
patterns. Two complementary integration approaches were 
outlined, a bottom-up and a top-down approach, each with 
common threads for clear and testable AI/ML safety 
requirements, architectural isolation, datasets treated as 
lifecycle artifacts with traceability, AI appropriate V&V, and 
continuous performance monitoring, all with an auditable 
assurance case that ties every claim to evidence.  

Taken together, these elements provide a coherent path 
for organizations that must reconcile IEC 61511 compliance 
with AI/ML capabilities. By making decisions explicit, 
engineering actions in line with risks, and maintaining a live 
assurance case, stakeholders can realize the benefits of 
AI/ML while preserving the engineering rigor, transparency 
of process, and safety of functionality that SIS demands.  
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