
WWW.CRITICALSYSTEMSLABS.COM

Uncovering Unsafe Feature Interactions in Vehicle Control
Using Generative AI and Digital Twins

Laure Millet – Critical Systems Labs Inc.
Justin Kernot – Critical Systems Labs Inc.
Arun Adiththan – General Motors Company
Ramesh S. – General Motors Company
Rami Debouk – General Motors Company
Jeff Joyce – Critical Systems Labs Inc.

Copyright Notice:

© 2025 Critical Systems Labs Inc.
This preprint has not undergone peer review or any post-submission
improvements or corrections. The Version of Record of this contribution is
published in Computer Safety, Reliability, and Security – SAFECOMP 2025,
and is available online at https://doi.org/10.1007/9. Use of this Accepted
Version is subject to the publisher’s Accepted Manuscript terms of use
https://www.springernature.com/gp/open-research/policies/accepted-
manuscript-terms.”

https://doi.org/10.1007/9
https://doi.org/10.1007/9

Uncovering Unsafe Feature Interactions in Vehicle

Control Using Generative AI and Digital Twins

Laure Millet1, Justin Kernot1, Arun Adiththan2, Ramesh S2, Rami Debouk2, Jeffrey

Joyce1

1 Critical Systems Labs Inc., Vancouver BC, Canada
2 General Motors, Warren MI, USA

laure.millet@cslabs.com

Abstract. Feature interaction analysis is essential for ensuring the safety of Ad-

vanced Driver Assistance Systems (ADAS), but it is often resource-intensive.

Traditionally, this process relies on expert-driven brainstorming and scenario-

based testing using digital twin simulators. Recent studies suggest that Large

Language Models (LLMs) can enhance these efforts by providing diverse per-

spectives and rapid content generation. However, effective use of LLMs in do-

main-specific contexts often requires complex adaptations, posing challenges for

teams with limited resources. This paper explores how general-purpose LLMs

can support feature interaction analysis in ADAS without complex LLM modifi-

cation techniques. Through a case study, we demonstrate how LLMs can identify

feature interactions and generate simulation parameters for evaluation. Our find-

ings highlight prompt engineering as a lightweight strategy for adapting LLMs

to specialized tasks and discuss the challenges faced while providing recommen-

dations to improve their effectiveness in safety-critical applications.

Keywords: scenario generation, prompt engineering, advanced driver assis-

tance systems (ADAS), feature interaction, large language model (LLM), digi-

tal twin.

1 Introduction

Collective human intelligence (CHI) enables groups of individuals to generate ideas

and solutions for complex problems. By pooling diverse perspectives and knowledge,

CHI often produces more comprehensive and creative outcomes than individual efforts

alone. This collaborative approach is especially valuable and used in complex, safety-

critical domains such as automotive systems, where identifying potential risks and fea-

ture interactions can be difficult and time-consuming. One common risk-reduction pro-

cess involves generating a set of challenge scenarios for a given system [1]. The process

typically involves a team of engineers collaborating over many days, weeks, or even

months to brainstorm, select, and refine a set of candidate scenarios. These scenarios

are designed to reveal unsafe behaviors in a controlled, pre-deployment environment

(such as a digital twin simulation platform) allowing designers to test mitigation strat-

egies and improve overall system safety. While this collaborative intelligence approach

2 L. Millet, J. Kernot, A. Adiththan, R. S, R. Debouk, J. Joyce

is effective, it is also resource-intensive, error-prone, and susceptible to biases. As au-

tomotive systems become increasingly sophisticated, there is a growing need for more

efficient methods of generating test scenarios.

The emergence of Large Language Models (LLMs) offers new opportunities to en-

hance CHI in such contexts [2]. LLMs, with their capacity to process vast amounts of

information and generate contextually relevant outputs, are ideal candidates to support

idea generation and support the human brainstorming process. By refining and expand-

ing on initial ideas, LLMs can amplify the collective intelligence of a group, providing

new possibilities for collaborative ideation in fields like automotive safety. Recent stud-

ies have explored the use of LLMs in systems safety engineering for automotive appli-

cations, where researchers investigate automating scenario and digital twin parameter

generation [3], [4] for Advanced Driver Assistance Systems (ADAS) [5], [6]. By lev-

eraging the creative abilities of an LLM, it has been demonstrated that LLMs are indeed

capable of generating test scenarios and simulation parameters to challenge an automo-

tive system for safety analyses [3], [4], [5], [6]. These efforts often involve relying on

methods, such as Retrieval-Augmented Generation (RAG), that use domain-specific

data to enhance the models' ability to generate relevant and accurate scenarios. These

methods, while effective, come with significant challenges, as they require substantial

computational resources, domain expertise, and access to large datasets, which may not

always be feasible, especially for resource-limited or exploratory projects [7].

This paper investigates an alternative lightweight approach: using off-the-shelf, pre-

trained LLMs for scenario generation without the need for fine-tuning or complex cus-

tomization. The ability to generate meaningful feature interaction scenarios with gen-

eral-purpose models could significantly reduce the barriers to entry for smaller teams

or resource-constrained projects. Specifically, we explore whether general purpose

LLMs can support scenario generation for ADAS vehicles in ways that are both prac-

tical and contextually relevant, without the need for extensive fine-tuning.

2 Relevant Work and Motivation

Given the complexity of operational design domains (ODDs) in autonomous driving,

researchers in the automotive domain have begun exploring the use of LLMs to support

the automated generation of diverse and realistic test scenarios aimed at uncovering

problematic corner cases. Arora et al. [3] investigated the effectiveness of using LLMs

to generate test scenarios for software quality assurance from a set of natural language

requirements. They employed RAG to allow the LLM to retrieve relevant information

from an external database before generating its response. The authors acknowledge that

while this approach greatly enhances the relevance of the generated scenarios, it still

struggles to capture precise action sequences and domain-specific nuances. Addition-

ally, RAG may not always be accessible or could be challenging to implement in prac-

tice for groups lacking resources or expertise. Xu et al. [4] used LLMs to generate a

diverse set of test scenarios for decision-making policies in robotic and automative ap-

plications by using mutations from a chosen seed scenario. While the researchers were

successful in generating useful tests, their results indicate that the performance is highly

 Uncovering Unsafe Feature Interactions Using GAI and Digital Twins 3

dependent on the chosen LLM and hyperparameter tuning which adds an additional

layer of complexity.

Some recent studies have extended the work further and attempted to address the

challenge of translating high-level scenarios into executable test cases by instructing

LLMs to generate testable code. Qiujing et al. [5] explore how LLMs can translate high-

level challenge scenarios for automotive safety into simulation-ready code by using

RAG in a feedback loop with a secondary LLM that critiques and proposes refinements

to the generated scenarios. They found that 25% of the outputs were considered useful,

suggesting some success in revealing critical behaviors. However, the implementation

architecture is quite complex, and the authors do not investigate the causes of these

failures or suggest ways to improve performance through framework modifications.

Zhang et al. [6] also use LLMs to generate safety-critical scenarios for autonomous

vehicles using RAG to augment the scenarios to match their specific simulation do-

main. However, while this method is more targeted to specific domain knowledge, it

relies on a large database of simulation data.

It was shown in [3], [4], [5], and [6] that LLMs offer powerful natural language

processing capabilities and have significant utility in generating domain-specific con-

tent. However, organizations with limited resources, such as insufficient data for fine-

tuning or limited infrastructure, face challenges in adapting these models to complex,

specialized tasks. The most accessible method of deploying an LLM remains its com-

mercial-off-the-shelf (COTS) form, where users interact with the model through a

browser interface or an open-source API, typically constrained to prompt input within

token limits. Additionally, while prior work demonstrates the potential of LLMs in sce-

nario generation and simulation for autonomous systems, none explicitly focus on iden-

tifying or analyzing unwanted feature interactions in automotive ADAS.

To address these constraints, our work explores strategies for leveraging LLMs ef-

fectively without resorting to resource-intensive approaches. Specifically, we investi-

gate structured interaction methods in an applied case study aimed at identifying sce-

narios that may lead to unwanted feature interactions in an ADAS-equipped vehicle.

These methods include task decomposition into smaller subtasks, assigning different

models to specific task types to exploit their strengths, semantic prompt engineering,

and various prompt-LLM interaction frameworks.

3 Background

This section provides a high-level overview of different elements and definitions that

are key to understanding this work. Section 3.1 covers unwanted feature interactions in

the automotive context, Section 3.2 covers digital twins in general, and Section 3.3

introduces general purpose LLMs.

3.1 Unwanted Feature Interactions

In the automotive context, a feature refers to a distinct unit of functionality that influ-

ences system behavior. These features could include various advanced driver assistance

4 L. Millet, J. Kernot, A. Adiththan, R. S, R. Debouk, J. Joyce

systems (ADAS); some examples of commonly implemented autonomous features in-

clude automated emergency braking (AEB) and adaptive cruise control (ACC). The

term “unwanted feature interaction” refers to a situation when two or more features

interact in a way that results in undesirable behaviours that could potentially put the

vehicle in an unsafe state [8]. An example of this can be seen in Fig. 1, where a vehicle

is receiving conflicting steering commands between the lateral collision avoidance

(LCA) and the lane-changing (LX) feature.

Fig. 1. A cartoon, bird’s-eye view of a feature interaction occurring between the lane changing

(LX) and lateral collision avoidance (LCA) of an ego vehicle, resulting in conflicting steering

commands between the two features

In complex systems with multiple active features that can interact in numerous ways,

detecting unwanted feature interactions is challenging due to the complexity of the sys-

tem and its operational domain. One common way that the feature interactions are iden-

tified is through scenario testing in a digital twin, where challenge scenarios are exe-

cuted to observe the behaviours and interactions of the ADAS features [9]. For exam-

ple, the scenario that led to the unsafe state shown by Fig. 1 can be described as follows:

i) the ego vehicle LX system initiates a lane change when path is clear, ii) as the ego

vehicle is crossing the centerline to change lanes, another vehicle rapidly accelerates

from behind, iii) the ego vehicle detects the other vehicle and the LCA system activates.

To thoroughly challenge the system, an exhaustive set of well-defined scenarios

must be established to ensure that all the possible unwanted feature interactions are

identified early in the design process for the automotive system. However, creating an

exhaustive set of test scenarios that lead to unwanted feature interactions remains a

major challenge in systems safety engineering.

3.2 Digital Twins

A digital twin is a virtual representation of a physical system that mirrors its structure,

behavior, and real-time operation. In the automotive domain, digital twins are used to

simulate entire vehicles or subsystems by integrating sensor data, control logic, and

environmental conditions. These models enable engineers to test system behavior in

diverse scenarios without extensive physical trials. In safety-critical domains, they offer

a powerful tool for identifying unwanted feature interactions. For example, frameworks

like the Autonomous Driving Digital Twin (ADDT) have been used to explore such

interactions under edge-case scenarios that are difficult to uncover through traditional

testing methods [10]. Similarly, fault injection techniques within digital twins allow for

the simulation of sensor failures or communication disruptions, providing insights into

 Uncovering Unsafe Feature Interactions Using GAI and Digital Twins 5

how such anomalies affect vehicle behavior and safety [11]. Despite their potential,

configuring digital twins for meaningful scenario analysis remains a challenge. Param-

eterizing these simulations to explore relevant safety scenarios demands deep domain

expertise and often lacks standardized methodologies.

3.3 General Purpose LLMs

General purpose LLMs such as OpenAI’s GPT-4 [12], Anthropic’s Claude [13], and

Meta’s LLaMa [14] are general-purpose AI systems trained on vast datasets that span

books, articles, code, and web content. Their training enables them to generate coherent

and contextually relevant text across a wide range of topics, making them useful for

tasks like idea generation, translation, and conversational agents without requiring task-

specific fine-tuning [12]. However, when applied to domain-specific applications, such

as automotive safety engineering, LLMs often encounter some limitations due to their

lack of grounding in the nuanced language and specialized reasoning required in these

fields [15]. To address these limitations, practitioners increasingly rely on prompt en-

gineering and LLM interaction techniques to incorporate domain-specific context into

the model’s inputs. By carefully crafting prompts, users can guide LLMs toward more

accurate and useful outputs without modifying the underlying model.

4 LLMs and Prompt Engineering

Prompt engineering is the process of strategically designing task-specific instructions

(prompts) to guide the LLM output without altering model parameters [16]. This is a

beneficial process since it allows users to have highly tailored LLM responses to a spe-

cific task without the need for fine-tuning or other more complex methods. The term

“prompt engineering” can refer to a number of methods, including semantic guidance

on how to present information and structure sentences, or changing the number and

type of prompt interactions that the user has with the LLM. When designing a prompt,

there are many semantic strategies that are commonly used and many of them depend

on the specific task that is being addressed by the LLM [16], [17], [18], [19], [20].

However, several strategies are emerging that are widely accepted as best practices.

The following list presents principles for effective prompt design that are applicable to

nearly all applications, and were applied in this work: 1) be clear and explicit with the

task, 2) provide the domain specific context to frame the problem/task, 3) break down

complex tasks into smaller and distinct tasks, 4), outline the output format, and 5) add

constraints to keep the LLM on task and produce responses that meet an acceptable

standard. While this list is not exhaustive, it provided a foundational set of principles

that guided the semantic and content design of the prompts developed in this work. In

addition to this semantic guidance, prompt engineering also refers to the methods by

which an LLM is prompted, not the design of the content of the prompt. Examples of

LLM interaction frameworks that are common include zero-shot prompting, prompt

chaining, and active prompting [16], [21]. In this work, we focus on employing the

following list of strategies across multiple LLM tasks:

6 L. Millet, J. Kernot, A. Adiththan, R. S, R. Debouk, J. Joyce

• Single Prompt (Zero-shot): Providing instructions or task requirements (without

examples) to the LLM in a single prompt and expecting the appropriate result in a

single response.

• Multi-shot History (Negative Constraints): Similar to the previous framework, but

with the prompt containing previous outputs from the LLM for the same task per-

formed in prior sessions. These outputs serve as both few-shot examples and exclu-

sion constraints.

• Prompt Chaining (Recursive Query): Providing follow-up prompts to the LLM

once it has provided a response, using the information produced in the session as

part of the next result.

• Chain-of-Verification (Internal Review): Two prompts are created: the first con-

tains the main instructions, and the follow-up contains a list of verification questions

for the LLM to check its work.

• Multi-Model Verification (External Review): In this framework, two independent

LLM sessions are active; one generates information, while the second verifies the

response and suggests corrections. This method intentionally separates the genera-

tion and verification tasks to mitigate token bias from previous responses.

5 Case Study Definition

To evaluate the strategies outlined in Section 4, we conducted a targeted case study

within an automotive application, aiming to enhance the system safety engineering pro-

cess. The system chosen for this study is an autonomous automotive system incorpo-

rating several unique ADAS features. Using a distinct system design encourages the

model to generate scenarios based on proprietary knowledge and novel features, rather

than relying on real-world data from the model’s training set. This strategy promotes

the generation of relevant scenarios tailored to the unique design of the system without

the need for an additional database or finetuning.

The system includes five ADAS features: lane centering (LC), autonomous lane

changing (LX), lateral collision avoidance (LCA), adaptive cruise control (ACC), and

automated emergency braking (AEB). Each feature has been implemented in the digital

twin simulator given the system’s specific characteristics, with each feature also exhib-

iting an intentionally unconventional design/behaviours. For example, the LCA system

and its rules for combining LCA and LC signals are designed specifically to contrast

typical implementations in real automotive applications. In doing so, the system chal-

lenges the LLM’s pseudo-reasoning capabilities by presenting new information that

may not be part of its existing knowledge base.

Using the open-source Modelica language, this automotive system was modeled as

a digital twin (DT) simulation and integrated into a custom library. The scope of the

DT environment and scenario capabilities is better described by Fig. 2. The DT is re-

stricted to a specific set of scenarios which simulate an ego vehicle controlled by the

previously described ADAS features interacting on a flat road with up to three other

vehicles. The interaction of the ADAS features, the environment, and the other agents

on the road create an emergent behaviour of the ego vehicle.

 Uncovering Unsafe Feature Interactions Using GAI and Digital Twins 7

Fig. 2. Visual representation of the scope and limitations of the DT simulator, highlighting the

maximum number of vehicles, lanes, and ADAS features.

6 Approach

In this case study, the high-level task is to generate a set of scenarios and scenario

parameters that result in an unsafe feature interaction between the ADAS features de-

scribed for the automotive system in Fig. 2. These scenarios must be unique, logically

lead to an unsafe vehicle state due to feature interactions, and generate parameters that

represent the scenario to be simulated in the DT described in Section 5. As outlined in

Section 4, a key strategy for developing a robust prompt is to break down complex

LLM tasks into smaller, dedicated sub-problems that can be solved individually. From

the larger task as defined previously, three key sub-tasks can be identified, each target-

ing a distinct problem that can be addressed with specific goals for the LLM.

The first task (Task 1) involves producing a diverse set of high-level scenarios that

could potentially lead to unwanted feature interactions. This task demands creativity,

adherence to system constraints, and the ability to generate unique yet relevant situa-

tions. Several prompt strategies were considered for this task. Firstly, the zero-shot ap-

proach was applied and involved asking the LLM to generate N scenarios in a single

output. Secondly, prompt-chaining was attempted, where the first prompt provided the

task description and context, and follow-up prompts requested additional unique sce-

narios, each building on the previous responses. Finally, a multi-shot history approach

was employed, where scenarios from prior outputs were included as examples with

negative constraints to prompt the LLM to generate scenarios that were not part of the

set.

Once scenarios are generated, they must be structured into logically coherent se-

quences of causal events. This task (Task 2) aims to ensure continuity, causality, and

logical correctness while maintaining consistency with the original high-level scenario

and the defined system behavior. The first prompting strategy considered for this task

involved a zero-shot approach, where the LLM was simply asked to generate a se-

quence of events from a given high-level scenario and system description. The second

prompt strategy tested was the chain-of-verification method, where the LLM first gen-

erated a sequence of events in one step, and a follow-up prompt requested the LLM to

review and refine its output based on a set of verification criteria. Finally, the third

prompt strategy involved the multi-model verification approach, in which two

8 L. Millet, J. Kernot, A. Adiththan, R. S, R. Debouk, J. Joyce

independent LLMs interacted with each other; one LLM was responsible for generating

a sequence of events, and a second LLM reviewed the output based on a set of verifi-

cation criteria and gave correction instructions.

Finally, Task 3 takes the structured event sequences as input and translates the sce-

nario into a set of simulation-ready parameters that recreate the scenario in the DT. This

process involves converting the natural language descriptions from the high-level sce-

nario and sequences numerical values in the predefined code snippets template to en-

sure compatibility with the Modelica language. Only a zero-shot approach was em-

ployed here, with the LLM being asked to generate the required parameters in a single

response from a detailed template that provides some specific formatting guidelines and

the task description. The decision to test a single prompt method here was made because

it is well known that LLMs do not internally propagate physical dynamics and, there-

fore, cannot provide deterministic parameters for a simulation [22]. Instead, they pro-

vide a reasonable approximation for value based on context and their internal

knowledge. While it has been shown that more complex architectures can be employed

to have an LLM review and correct simulation parameters based on errors [5], the ob-

jective was to employ a strategy that does not require substantial expertise or resources

to implement.

For each task, a brief prompt engineering phase was performed using the semantic

guidance provided in Section 4. In order to better understand prompt-to-output correla-

tions, we iteratively made single adjustments using low temperature settings to reduce

stochastic influences in the models. The prompt engineering phase reinforced the im-

portance of precise definitions and clear instructions in guiding LLMs to generate rel-

evant, accurate, and consistent outputs. Furthermore, it was observed that certain LLMs

yielded better results based on the outlined tasks. Ultimately, Task 1 used OpenAI’s

GPT-4o-mini and Tasks 2-3 used Meta’s LLaMa3-2-90b. Following this, an evaluation

was performed where each of these prompt strategies was evaluated against predefined

criteria.

7 Results

In Task 1, the three prompt strategies described in Section 6 were evaluated on a set of

10 generated scenarios. The evaluation of these scenarios was based on several criteria,

including uniqueness, complexity, variance, quality, and novelty. Uniqueness was

measured as the percentage of responses containing unique scenarios, while complexity

evaluated the percentage of total possible scenario elements utilized. Variance assessed

the categorical variance of potential scenario elements across all generated scenarios.

Quality was a subjective score (normalized from a 1-5 scale) based on predefined cri-

teria: 5 – no issues, 4 – system misunderstanding, 3 – system/task misunderstanding, 2

– multiple system/task misunderstandings, 1 – no feature interactions in scenario. Nov-

elty was measured by the percentage of scenarios that were substantially different from

the 16 scenarios generated by human experts during a one-hour working session. The

evaluation results for the three prompt strategies are shown in Table 1.

 Uncovering Unsafe Feature Interactions Using GAI and Digital Twins 9

Table 1. Task 1 evaluation results.

Criteria Zero-Shot Chain Prompt Multi-Shot Human 1 Human 2

Uniqueness 0.90 0.80 0.80 1.0 1.0

Variance 0.14 0.50 0.66 0.03 0.08

Complexity 0.40 0.82 0.70 0.45 0.49

Quality 0.78 0.47 0.78 0.60 0.98

Novelty 0.67 1.0 1.0 - -

Among the different prompt and model combinations, the zero-shot prompt outper-

formed the other approaches. This performance difference can likely be attributed to

LLM limitations with negation and negative constraints [23]. Additionally, when test-

ing the prompt chaining and multi-shot history methods, it was observed that the mod-

els often misinterpreted the "uniqueness" requirement, which seemed to be interpreted

as semantic uniqueness rather than content uniqueness. Furthermore, it is hypothesized

that self-consistency is more easily maintained when LLMs are tasked with producing

a single output as opposed to multiple outputs with regards to having unique responses.

When comparing the LLM performance to human-generated results, it is notable that

while human participants (who had one hour to generate scenarios) created 7-9 scenar-

ios each, the LLM generated 10 scenarios in mere seconds. Despite the speed, the com-

plexity of the generated scenarios matched human output, demonstrating a suitable

level of complexity, novelty, and uniqueness in the generated scenarios. This result

indicates that despite using significantly fewer resources, LLM-assisted scenario gen-

eration can approach the performance of a human executing the same task.

For Task 2, the three prompt strategies were tested on a set of six high-level scenarios

of varying quality to evaluate the models' ability to correct logical inconsistencies and

maintain causality. The evaluation criteria included causality correction, which was

rated on a scale of 0-1 based on how well the model identified and corrected logical

inconsistencies; causality quality, which measured the percentage of steps that were

logically connected to the following steps; the quality of initial conditions, rated on a

scale of 0-1; and continuity, which was measured by the accuracy of the model’s event

sequence compared to the original high-level scenario. While these criteria were mostly

based on a subjective scoring system, a rubric was established a priori, and the evalua-

tion was carried out by a competent team of system engineers with the necessary do-

main knowledge and expertise. The evaluation results for the three prompt strategies

applied to Task 2 are shown in Table 2.

In this task, the chain-of-verification method performed the best compared to the

zero-shot and multi-model verification approaches when considering causality perfor-

mance and quality. Surprisingly, the zero-shot approach was of a comparable perfor-

mance to the chain-of-verification method with a better continuity score. This is be-

cause if the scenario had a fundamental causality issue, the chain-of-verification

method would identify and alter the generated scenario, resulting in a deviation from

the reference scenario. Despite having the worst overall performance, the multi-model

verification method performed the verification and review to a high degree of quality

and could be a valid approach to review, however, the corrections made to the generated

scenarios were often too extreme and lead to poor output quality. Although the results

10 L. Millet, J. Kernot, A. Adiththan, R. S, R. Debouk, J. Joyce

were close with respect to the different interaction frameworks, a larger sample size

might have provided more definitive insights into the relative effectiveness of each

method.

Table 2. Task 2 evaluation results.

Criteria Zero-Shot
Chain-of-

Verification

Multi-Model

Verification

Causality Correction 0.72 0.72 0.67

Causality Quality 0.87 0.89 0.77

I.C. Quality 0.83 0.89 0.83

Continuity 1.0 0.50 0.50

In Task 3, only the zero-shot strategy was attempted, and the performance of all

models was evaluated by running the simulations in the DT. The responses for Task 3

were tested within the DT framework to see how well the model's output matched the

expected scenario outcomes. The results demonstrate that using the framework outlined

in this paper, it is possible for an LLM to generate DT parameters for scenarios that

lead to unwanted feature interactions, with minimal human intervention. In some in-

stances, the LLM produced parameter sets compatible with the DT simulator, success-

fully recreating the scenario and predicting the unwanted feature interactions described

in the parent scenario. However, this occurred only about 25% of the time. In most

cases, the LLM-generated parameters did not align with the expected outcomes de-

scribed by the scenario, and thus no feature interactions were observed in the simula-

tion. In cases where the parameters did not lead to the intended outcome, it was found

that roughly 2-3 manual parameter adjustments (which equated to roughly 10% of the

total parameter count) per output were necessary to correct the scenario. For example,

if two vehicles were intended to interact but did not due to a temporal or positional

mismatch, modifying the initial relative position of the vehicles, given their speeds, was

sufficient to resolve the issue. This implies that despite the LLM having imperfect re-

sponses, a considerable amount of the data returned could be used as a baseline for the

digital twin.

These are expected outcomes for the performance of the LLM with respect to Task

3, since LLMs merely provide reasonable estimates for parameters, rather than verified

values based on deterministic dynamics propagation. While the LLM’s outputs cannot

guarantee exact values, there is still a possibility that the LLM may “stumble” upon the

correct answer without requiring further modifications to result in the expected out-

comes in the simulation. These results indicate that even though using an LLM does

not guarantee perfect accuracy for simulation parameter generation, it can still serve as

a valuable tool. By assisting engineers, the LLM can perform much of the “heavy lift-

ing” and provide a reasonable starting point for further corrections, rather than requiring

the engineer to manually synthesize parameters from scratch.

 Uncovering Unsafe Feature Interactions Using GAI and Digital Twins 11

8 Conclusion

For organizations without the resources to fine-tune LLMs, alternative strategies can

still yield practical and effective results. This work demonstrated that LLMs can gen-

erate a set of candidate scenarios, decompose scenarios into a set of logical events, and

generate digital twin parameters that correspond to a given scenario. Despite the results

being imperfect, this method still offers a means to significantly reduce the human over-

head required to generate concept scenarios and a strong baseline estimate for their

respective simulation parameters. By leveraging structured prompting, decomposition,

and verification techniques, domain-specific applications of LLMs become more fea-

sible.

Additionally, this work supports the idea that not all LLMs are interchangeable when

used for the same tasks, as some exhibit better performance in a given task type. It is

therefore important to consider the application in which the LLM is being applied and

consider the nature of the task when selecting an LLM. A notable aspect of our method

is the use of a multi-LLM setup, where different models are selected for tasks based on

empirical performance, paired with tailored prompt interaction strategies. This modu-

larity enhances flexibility and enables more effective use of general-purpose models

without complex infrastructure. Furthermore, the results of this work indicate that the

readiness for using LLMs in a fully automated pipeline might not be feasible at the time

of writing this paper. However, using LLMs with humans in the loop might help reduce

overhead in brainstorming tasks and potentially open new avenues for discussion and

idea generation.

The evaluation methods presented in this paper for assessing the performance of

LLMs on Tasks 1-3 provide a lightweight yet effective metric for gauging their capa-

bilities. While these methods may be unconventional, they are highly transferrable

across various domains, offering valuable insights for LLM evaluation. This approach

not only aids in assessing model effectiveness but also serves as a practical framework

for guiding prompt engineering and design decisions for implementing LLMs in prac-

tical applications.

8.1 Limitations and Threats to Validity

The methods used to evaluate both the performance of the LLMs and the proposed

approach rely on metrics that require expert knowledge and involve subjective judg-

ment. As a result, the findings may not be consistently replicable across different eval-

uators and carry a degree of uncertainty. Additionally, the small sample size limits the

statistical significance of the results, making it difficult to draw generalizable conclu-

sions. This study should therefore be viewed as offering preliminary insights about the

effectiveness of the proposed methods and the performance of LLMs in similar appli-

cations.

Beyond these methodological concerns, LLMs have known limitations that constrain

the capability of this work. Firstly, LLMs are known to produce hallucinations or in-

correct outputs that can be subtle and difficult for human reviewers to detect, potentially

leading to incorrect information propagating through the proposed framework.

12 L. Millet, J. Kernot, A. Adiththan, R. S, R. Debouk, J. Joyce

However, since scenarios are validated using a digital twin, hallucinations are likely to

be caught during simulation.

In addition to hallucinations, the models used in this paper are known to not have

the ability to propagate dynamics through time and can therefore not generate a math-

ematically proven set of parameters. Despite this, the LLM generated parameters for a

given scenario perfectly 25% of the time; the remaining 75% of the time yielded a set

of scenarios where only 10% of the parameters generated required manual adjustment.

As system complexity increases, it is possible that the error rates will also increase and

ultimately require more human oversight to correct the issues. However, as LLMs im-

prove overtime, the frequency and severity of such risks (e.g., hallucinations and incor-

rect numerical generation) might be substantially improved and not be a source of sig-

nificant risk of this work, though this is a speculative assumption.

8.2 Future Work and Opportunities

To enhance scenario diversity and coverage, future work will explore guiding the

LLM to generate scenarios based on targeted parameter sets, using strategies inspired

by combinatorial testing to expose more corner cases. We also aim to improve the scala-

bility of our experiments to yield statistically significant insights. Additionally, we plan

to investigate methods to automate the iterative review and adjustments required for

Task 3. Currently, an expert is required to review the simulation outputs and identify

incorrect parameters based on the output of the simulation. To mitigate this effort and

minimize the amount of human involvement, we plan to include an iterative feedback

loop where simulation results from the digital twin are fed back into an LLM along with

the simulation errors and outcome descriptions, enabling it to refine scenario transla-

tions when discrepancies arise due to misaligned numerical representations.

Disclosure of Interests. The authors have no competing interests to declare that are relevant to

the content of this article.

References

1. S. Diemert, A. Casey and J. Robertson, "Challenging Autonomy with Combinatorial Test-

ing," in 2023 IEEE International Conference on Software Testing, Verification and Valida-

tion Workshops (ICSTW), 2023.

2. J. Burton, E. Lopez-Lopez, S. Hechtlinger, Z. Rahwan, S. Aeschbach, M. Bakker et al.,

"How large language models can reshape collective intelligence," Nature Human Behaviour,

pp. 1643-1655, 01 09 2024.

3. C. Arora, T. Herda and V. Homm, "Generating test scenarios from NL requirements using

retrieval-augmented LLMs: an industrial study," in Requirements Engineering, Vienna,Aus-

tria, 2024.

4. W. Xu, H. Pei, J. Yang, Y. Shi, Y. Zhang and Q. Zhao, "Exploring critical testing scenarios

for decision-making policies: an LLM approach," in arXiv, 2024.

5. L. Qiujing, W. Xuanhan , J. Yiwei , Z. Guangming, . M. Mingyue and F. Shuo , "Multimodal

large language model driven scenario testing for autonomous vehicles," in Artificial Intelli-

gence, Automation and High Performance Computing, Zhuhai, China, 2024.

 Uncovering Unsafe Feature Interactions Using GAI and Digital Twins 13

6. J. Zhang, C. Xu and B. Li, "ChatScene: knowledge-enabled safety-critical scenario genera-

tion for autonomous vehicles," in Computer Vision and Pattern Recognition, Seatle WA,

USA, 2024.

7. S. Zhao, Y. Yang, Z. Wang, Z. He, L. K. Qiu and L. Qiu, "Retrieval augmented generation

(rag) and beyond: A comprehensive survey on how to make your LLMs use external data

more wisely," arXiv preprint arXiv:2409.14924, 2024.

8. A. L. J. Dominguez, "Feature interaction detection in the automotive domain," in 2008 23rd

IEEE/ACM International Conference on Automated Software Engineering, 2008.

9. L. Birkemeyer, T. Pett, A. Vogelsang, C. Seidl and I. Schaefer, "Feature-interaction sam-

pling for scenario-based testing of advanced driver assistance systems," in Proceedings of

the 16th International Working Conference on Variability Modelling of Software-Intensive

Systems, 2022.

10. B. Yu, C. Yuan, Z. Wan, J. Tang, F. Kurdahi and S. Liu, "ADDT - digital twin framework

for proactive safety validation in autonomous driving systems," arXiv:2504.09461, 2025.

11. D. Bergin, W. L. Carden, K. Huynh, P. Parikh, P. Bounker, B. Gates and J. Whitt, "Tailoring

the digital twin for autonomous systems development and testing," The ITEA Journal of

Test and Evolution, vol. 44, no. 4, 2023.

12. OpenAI, "GPT-4 technical report," arXiv preprint arXiv:2303.08774, 2023.

13. Antrhopic, "The Claude 3 Model Family: Opus, Sonnet, Haiku," 2024.

14. A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, et al., "The LLaMa

3 herd of models," arXiv preprint arXiv:2407.21783, 2024.

15. R. Bommasani, D. A. Hudson, E. Adeli, R. B. Altman, S. Arora, S. von Arx, et al., "On the

opportunities and risks of foundation models," arxiv:2108.07258, 2021.

16. P. Sahoo, A. K. Singh, S. Saha, V. Jain, S. Mondal and A. Chadha, "A systematic survey of

prompt engineering in large language models: techniques and applications," arXiv preprint

arXiv:2402.07927, 2024.

17. J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert et al., "A prompt pattern catalog

to enhance prompt engineering with ChatGPT," arXiv preprint arXiv:2302.11382, 2023.

18. J. D. Zamfirescu-Pereira, R. Y. Wong, B. Hartmann and Q. Yang, "Why Johnny can’t

prompt: how non-AI experts try (and fail) to design LLM prompts," in Proceedings of the

2023 CHI conference on human factors in computing systems, 2023.

19. W. C. Choi and C. I. Chang, "A survey of techniques, key components, strategies, chal-

lenges, and student perspectives on prompt engineering for large language models (LLMs)

in education," Preprint, 2025.

20. S. Maaz, J. C. Palaganas, G. Palaganas and M. Bajwa, "A guide to prompt design: founda-

tions and applications for healthcare simulationists," Frontiers in Medicine, vol. 11, p.

1504532, 2025.

21. J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. H. Chi, Q. Le and D. Zhou, "Chain of

thought prompting elicits reasoning in large language models," in Advances in Neural In-

formation Processing Systems, 2022.

22. M. Ali-Dib and K. Menou, "Physics simulation capabilities of LLMs," Physica Scripta, vol.

99, no. 11, p. 116003, 2024.

23. J. Jang, S. Ye and M. Seo, "Can large language models truly understand prompts? a case

study with negated prompts," in Transfer learning for natural language processing workshop,

2023.

24. Y. Wang, Z. Zhang, H. Chen and H. Shen, "Reasoning with large language models on graph

tasks: the influence of temperature," in 2024 5th International Conference on Computer En-

gineering and Application (ICCEA), 2024.

	Slide 1

