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Abstract—Combinations of operating conditions can trigger a
system to behave in a hazardous manner, even in the absence of
malfunction. ISO 21448 - Road vehicles - Safety of the intended
functionality (referred to as “SOTIF”) describes strategies for
managing this type of risk in automotive systems. One strategy
includes the identification of operating scenarios that might lead
to the occurrence of a hazard. Crafting scenarios is a technically
challenging and labor-intensive task that requires sustained
creative engagement, and the consequence of inadequate SOTIF
analyses can be severe. This paper introduces Heraclitus, an
engineering method and prototype software tool for performing
SOTIF scenario generation with the support of a large language
model. Large language models are a novel type of generative
artificial intelligence targeted at natural language processing and
generation that exhibit remarkable performance in a range of
natural language applications that have historically been difficult
for conventional artificial intelligence systems. As such, there is
an opportunity to use these models, in collaboration with humans,
to support SOTIF scenario creation. The goal of Heraclitus is to
allow analysts to rapidly produce a comprehensive set of SOTIF
scenarios that can be used as the basis for on-going SOTIF
risk management. A preliminary control trial of Heraclitus was
conducted, in which six system safety experts were asked to
create SOTIF scenarios with and without the support of a large
language model. Results indicate that these models show promise
in supporting SOTIF analysis and are capable of generating
useful SOTIF scenarios.

I. INTRODUCTION

Modern automotive systems, including driver assistance
or autonomous systems, depend on advanced technology to
operate safely. For instance, the perception systems in au-
tonomous vehicles depend heavily on machine learning models
to interpret sensor data and generate (in real-time) model of
the world near the vehicle which can be used to make motion
planning decisions [1]. Even without a technical malfunction,
such as failure of a sensing hardware or a software defect,
it is possible for these systems to fail due to insufficiencies
in processing a diverse range of conditions. Safety of the
Intended Functionality (“SOTIF”), as contemplated by ISO
21448 [2], provides a framework and guidance on how to

manage safety risk arising from a diverse range of known and
unknown triggering conditions.

An important step in this process is identifying sequences
of scenes, events, actions, and goals or “scenarios” that might
lead to the occurrence of a hazard [2]. These scenarios form
the basis of subsequent SOTIF risk management activities.
Currently, identifying scenarios depends heavily on the capa-
bilities of expert human analysts to craft scenarios, which is a
technically challenging and labor-intensive task that requires
sustained creative engagement. Further, the consequence of
inadequate SOTIF analyses can be severe.

Large Language Models (LLMs), a novel type of machine
learning model, are targeted at natural language processing
and generation. Though their core function is to predict the
next word in a sequence, based on the previous words and
their statistical relationships, they have exhibited remarkable
performance in a range of natural language applications. As
such, there is an opportunity to deploy LLMs to support SOTIF
analysis for Advanced Driver Assistance System (ADAS) and
autonomous vehicles.

The contribution of this paper is Heraclitus, a human-LLM
co-operative method and accompanying software tool that uses
an LLM to enhance the productivity and quality of human-
led SOTIF scenario generation. Three research questions re-
garding the feasibility and utility of the Heraclitus method
are explored, with results indicating that LLMs, when used
according to the Heraclitus method, can produce useful SOTIF
scenarios and may have the potential to meaningfully support
human analysts in SOTIF scenario generation.

Section 2 of this paper provides background information
on SOTIF and LLM functionality. Section 3 introduces the
Heraclitus method and software tool; Section 4 describes the
evaluation methods used; Section 5 contains the results of the
evaluation; Section 6 provides a summary of related work; and
Section 7 concludes with discussion and future work.

II. BACKGROUND

This section provides information on two key components
of this work: SOTIF analysis and LLM functionality.



A. Safety of the Intended Functionality (SOTIF)

Combinations of operating conditions can trigger a system
to behave in a hazardous manner, even in the absence of
malfunction. SOTIF provides guidance on how to manage
safety risk arising from a diverse range of known and unknown
triggering conditions, formally defining SOTIF as “absence
of unreasonable risk due to hazards resulting from functional
insufficiencies of the intended functionality or its implemen-
tation” [2]. Importantly, SOTIF risk arises from the inability
(“insufficiency”) of the technology to handle the triggering
conditions, not malfunctioning system components. Addition-
ally, SOTIF includes the concept of reasonably foreseeable
misuse by persons operating or near the vehicle.

Sequences of scenes, events, actions, and goals or “sce-
narios” are an important concept in SOTIF and are the basis
of risk-management activities [2]. A scenario might contain
a “triggering condition” that initiates potentially hazardous
behavior of the system, though the occurrence of a trigger
does not guarantee that hazard will occur. A trigger might
reveal an insufficiency of a system resulting in a hazardous
event. It is also possible, however, that the vehicle might not
be in a situation where the hazardous event will cause harm
or the operator of the vehicle might be able to intervene and
prevent the hazard. The guidance in ISO 21448 is framed
around the categorization of scenarios as known versus un-
known and hazardous versus not hazardous. The objective of
SOTIF activities is two-fold: 1) identify as many (hazardous)
scenarios as possible, such that the set of unknown scenarios
is reduced, and 2) mitigate risk arising from known (and
possibly unknown) hazardous scenarios. A simple example of
a SOTIF scenario for a vehicle perception system might be:
The vehicle is driving at night time. A pedestrian wearing dark
clothing crosses the street in front of the vehicle. Due to the
low lighting conditions, the camera-based perception system
does not detect the pedestrian until it is too close the vehicle.

B. Large Language Models

Despite their impressive capabilities, the core function of
an LLM is to predict the next word in a sequence, based on
the previous words and their statistical relationships [3]. Re-
lationships between word fragments are encoded as numerical
parameters in the LLM’s internal neural network(s), which are
learned by processing large volumes of textual training data.
The number of numerical parameters (on the scale of billions
for the largest models) in the LLM is often correlated with the
language processing capabilities of the model [4].

An important consequence of the word prediction approach
outlined above is that LLMs do not perform reasoning tasks in
the same way humans do, e.g., making abstractions of reality,
applying inferences, arriving at conclusions. Rather, the fact
that the statistical structure of LLMs reflects, to at least some
extent, human reasoning is a convenient reality that allows the
output of LLMs to be used in a wide range of applications.
Despite their utility, LLMs are ultimately “stochastic parrots,”
and their output should be treated with skepticism [3].

LLMs occasionally exhibit a phenomenon referred to as
“hallucination”, in which they produce outputs that appear to
be plausible, but are, in fact, inaccurate [5]. The potential
risks introduced by LLM hallucination should be carefully
considered when designing applications that depend on LLMs
[6]. In some cases, it might be advantageous for LLMs to
hallucinate, as this might cause human users to pause and
examine a situation more carefully which could ultimately lead
to new insights [7].

Requests, along with any necessary instructions or back-
ground information, are sent to LLMs using a “prompt”. As
prompt content and style can have a significant impact on the
quality of the results produced, “prompt engineering” is used
for prompt refinements. Prompt length is limited by the size of
the LLM’s context window, i.e., the number of word fragments
that it can use to predict the next word in the sequence.
Commercially available LLMs have context windows on the
order of 128,000 word fragments (about 96,000 words).

III. HERACLITUS

This section introduces the Heraclitus1 method and tool,
which aim to identify and prioritize SOTIF scenarios for a
system operating within a defined environment. It provides
LLM support for a co-operative, human-led scenario genera-
tion, aiming to improve productivity and enrich results.

A. The Heraclitus Method

The Herclitus method has four steps: 1) model the system,
2) model the environment, 3) generate scenarios, and 4) rank
scenarios. These steps are depicted in Fig. 1 and discussed in
detail below.

To illustrate the method, this section will refer to a fictitious
Adaptive Cruise Control (ACC) ADAS feature as a running
example. The ACC uses a forward radar sensor to measure
the relative speed and distance to a vehicle (the “forward
vehicle”) in front of the ego vehicle. If a forward vehicle
is present, the ACC adjusts the speed of the ego vehicle to
maintain a minimum longitudinal separation. Additionally, the
ACC maintains the speed of the ego vehicle at or below a set
point provided by the vehicle operator.

Step 1: Model the System

The first step of the Heraclitus method is to provide a model
of the system that is composed of components, interactions,
hazards, and a free text description.

Components correspond to functional elements of the real
system such as sensors or control units. In the ACC example,
components include a forward radar, ACC controller, and
propulsion controller.

Interactions describe relationships between a source and tar-
get component and typically also include a condition expressed
in natural language. In the ACC example, an Interaction from

1This method and software tool are named after the ancient Greek philoso-
pher, Heraclitus, who is remembered for the observation: you cannot step into
the same river twice. This references the fact that a river is in a constant state
of flux and transformation. Like its namesake, this method and software tool
are focused on the unbounded variability of scenarios that can be generated
from a set of elements in the operating environment of a system.
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Fig. 1. Overview of the Heraclitus method.

the feature’s ACC controller component and to the propul-
sion controller might have the description: “when the ego
vehicle’s speed falls below the provided speed setpoint, then
the ACC controller requests acceleration from the propulsion
controller.”

Hazards describe conditions that, if they occur, might con-
tribute to harm. The system model captures a simplified ex-
pression of these hazards that includes a name and definition.
In the ACC example, a hazard might be “loss of longitudinal
separation” with the description “this hazard occurs when the
longitudinal separation between the ego vehicle and forward
vehicle is less than 1 second (in terms of time-to-collision)”.

Step 2: Model the Environment
The second step of the Heraclitus method is to provide a

model of the system’s operating conditions or environment
composed of elements arranged in a recursive structure where
each element can have child elements that are more specific.
For instance, a top-level Element might be “precipitation” with
child elements “rain”, “snow”, “fog”, and so on.

Elements optionally have attributes with predefined values
that describe how the element’s manifestation might vary in
a scenario. For example, the element “precipitation” might
have an attribute “intensity” with values: “none”, “light”,
“moderate”, “heavy”, and “extreme”. In subsequent analysis
steps, a list of elements and their corresponding attributes
(including potential values) is sent to the LLM, which may
incorporate the attribute values into the scenarios it generates.
Child elements inherit their parent’s attributes.

Step 3: Generate Scenarios
The third step of the Heraclitus method is to generate

SOTIF scenarios with the aid of an LLM. A scenario consists
of a description, trigger, hazard, rationale, and guideword.
The description contains a sequence of events or conditions
leading to the occurrence of a hazard. The trigger is the
triggering condition in the scenario (e.g., “heavy rain reduces
the detection performance of the forward radar”). The hazard
is a condition of the system that occurs in the scenario that
is likely to precede harm. The rationale contains additional
narrative about why the trigger might result in an occurrence
of the hazard. The guideword is a word or phrase that helps
to interpret the trigger (e.g., “not enough”).

To generate scenarios, the analyst first selects one or more
environmental elements, which are provided to an LLM along
with a description of the system. The LLM returns a “batch”
of one or more generated scenarios that are referred to
as “candidates”. The human analyst must then review the
candidate scenarios and accept only those that they deem
useful. Analysts can edit candidate scenarios to correct small
mistakes prior to acceptance or reject scenarios that are not
repairable. Analysts may also manually craft scenarios during
this step. This workflow is repeated for different combinations
of environmental elements, using the analyst’s intuition to
guide element selection.

For simplicity, Heraclitus uses a “zero-shot” prompting
approach, where all the information about the system and
environment is provided in a single prompt without any
examples or additional information provided, and where the
analyst is unable to interact with the LLM to refine results.
Prompts are formulated by composing information from the
system model and the selected environmental elements in a
prompt template as shown in Fig. 2.

Step 4: Rank Scenarios

The final step of the Heraclitus method is to rank the
accepted list of scenarios according to some predefined cri-
teria, such that the highest priority scenarios appear at the
top of the list. Given many scenarios and limited engineering
resources, this ranking makes it easier to focus on the highest
priority scenarios when designing mitigations. In the prototype
implementation of the Heraclitus software tool, two criteria
were chosen for consideration: 1) likelihood - a subjective
assessment of how frequently the scenario is likely to occur
for the real system; and 2) novelty - an assessment of whether
the scenario challenges the system in a unique or unexpected
manner that reveals a functional insufficiency. While severity
is also an important criterion, it is already associated with the
scenario’s hazard (assuming the hazards are assessed using
the method from Part 3 of ISO 26262) [8], and is thus already
accounted for in the ranking procedure.

Ranking is performed with a pairwise comparison method
where a systematic procedure is used to select the next pair
of scenarios to compare, and a human analyst indicates which



You are an expert in autonomous vehicle safety engineering. Given the system description below, please generate exactly
$$NUM SCENARIOS$$ scenarios [...]
Please format your response as a syntactically correct array of $$NUM SCENARIOS$$ JSON objects [...]
The system description and environmental conditions are as follows:
Section 1) System:

Section 1.1) Description Summary: $$SYSTEM DESCRIPTION$$
Section 1.2) Components: $$COMPONENT LIST$$
Section 1.3) Allowable Interactions Between Components: $$INTERACTION LIST$$
Section 1.4) Potential Hazards: $$HAZARD LIST$$

Section 2) Environment:
Section 2.1) Environmental Elements: $$CONDITION LIST$$

Section 3) Guide Phrases: $$GUIDE WORD LIST$$

Fig. 2. Prompt template. The $$ notation represents a placeholder for parameters or information from the system model and selected environmental elements.

of the two scenarios in the pair is preferred for each of the
criteria.

B. The Heraclitus Tool

So far, this section has described the Heraclitus method in
general terms without regard for how a tool might support the
work. In practice, SOTIF analysis for any real-world ADAS
or autonomous system is a demanding task involving many
components, interactions, and environmental conditions which
will produce a large number of SOTIF scenarios. A prototype
software tool, one view of which is shown in Fig. 3 below, was
developed to help analysts apply the Heraclitus method and to
provide an experimental platform with which to evaluate the
method. Users can input components, interactions, and hazards
to model a system; add and select environmental elements; and
generate, edit, and rank scenarios.

IV. EVALUATION

A small control trial was conducted as a preliminary eval-
uation of the Heraclitus method, with a focus on the scenario
generation capability of an LLM. Participants completed a
SOTIF scenario generation task without LLM support (con-
trol) and with LLM support (intervention). Participants were
divided into two groups, each performing a scenario generation
task with and without the LLM. This experiment aims to
answer the following research questions:

• RQ1: Can an LLM produce a useful proportion (33%) of
acceptable SOTIF scenarios that would assist an analyst
during a SOTIF analysis?

• RQ2: Does an LLM help analysts generate a larger
number of acceptable SOTIF scenarios, compared to
doing the same task manually?

• RQ3: Do the SOTIF scenarios produced by the LLM
provide better coverage of the system environment, com-
pared to doing the same task manually?

For RQ1 threshold of 33% was selected because it rep-
resents a situation where approximately one in every three
scenarios generated by the LLM is meaningful for the purpose
of SOTIF analysis. That is, in a co-operating analysis setting,
not every scenario generated by an LLM must be meaningful.
We reason that an analyst might be willing to tolerate two out

of every three generated scenarios being unusable (even after
light editing).

Six participants were recruited from the team of engineers
at Critical Systems Labs and divided into two equal groups
(Group A and Group B). Most participants had prior expe-
rience with SOTIF analysis, and none had prior experience
using Heraclitus.

A. Experimental Procedure

The experiment was conducted over three sessions. In the
introductory session, participants completed a short exercise
designed to familiarize them with the tool, both with and
without LLM support (Llama 3.2 11B Instruct running on
Amazon Bedrock). Two versions of the Heraclitus tool were
prepared, one with both manual scenario generation and LLM-
based scenario generation enabled and a second version with
only manual scenario generation enabled. Both versions were
configured to track user actions. All data collected from
Heraclitus was de-identified. Beyond basic functionality, min-
imal guidance was provided to participants regarding how to
use the LLM aspect of the tool. Participants were told that
the objective was to evaluate the LLM’s “usefulness”, and
that they should utilize it in a manner they found useful to
create SOTIF scenarios. An example system was presented in
each session, with Adaptive Cruise Control used in session
two and Parking Assist used in session three. The example
systems were chosen such that the two exercises would be
similar enough to be comparable in difficulty, but different
enough that completing one before the other would be unlikely
to introduce bias or influence the outcome of the second.
Participants were given a model file containing a pre-defined
system and environment which they loaded into Heraclitus.
Participants were able to modify the model but were not
required to do so, allowing them to focus exclusively on the
task of scenario generation. Both groups were given one hour
to generate SOTIF scenarios using Heraclitus. Participants
were not required to rank the results, only generate a list
of acceptable scenarios. After the final session was complete,
participants completed a short online questionnaire, providing
feedback on their overall experience, how useful they found
the LLM support, and how they might improve Heraclitus.



Fig. 3. Overview of the Heraclitus tool.

B. Analysis

The final scenarios were analyzed for quantity, quality,
diversity, and coverage. For the purpose of answering RQ1
and RQ2, all scenarios accepted by the participants were
assumed to be credible or useful. Scenario quantity was
assessed by comparing the number of accepted scenarios
each participant generated with and without LLM support.
Quality was measured by inspecting a random sample of
ten manually generated scenarios and ten LLM-generated
scenarios and extracting general observations. Diversity and
coverage scores were generated for each participant for both
manual and LLM-generated scenarios, reflecting the average
number of environment elements included in each scenario
and the number of unique environment elements addressed in
all scenarios.

V. RESULTS

This section presents the results of the experiment and
addresses the research questions described above.

A. Experimental Results

The results of the control trial are presented in Table 1. On
average, participants sent 27 queries to the LLM (one query
every 2.2 minutes). The LLM responded with a syntactically
valid response that could be parsed by Heraclitus 88% of the
time. Responses containing a batch of one or more scenarios
were returned to the user within 12.9 seconds (95% CI [9.6,
16.3]), on average.

While using the LLM, each participant generated an average
of 39.8 (95% CI [28.8, 50.9]) candidate scenarios, which is
1.47 candidates per query or 0.65 candidates per minute. On

average, only 15.7 (95% CI [10.9, 20.4]) or 39% of the can-
didates were ultimately accepted by participants as credible,
useful, and non-duplicate SOTIF scenarios, which corresponds
to participants accepting a new scenario every 3.82 minutes.
By contrast, when working manually participants created an
average of 16 (95% CI [10.1, 21.9]) scenarios each.

The participants generated a total of 239 scenarios with
LLM support. Of these, 94 scenarios were accepted by the
participants, 53 of these scenarios were edited by participants
before they were accepted (average of 6.6 scenarios per
participant). Acceptance of a scenario by a participant was
used as a proxy for whether the scenario was meaningful. A
statistical test showed that the finding of 39% of scenarios
being usable is statistically significant (p < 0.05) compared
to the stated target threshold of 33% (from RQ1) [9]. That is,
if this experiment were to be repeated with a similar set of
participants, there is a high probability the number of accepted
scenarios would be larger than 33%.

Only two scenarios generated with the support of an LLM
were edited but were not accepted, otherwise all edited LLM
generated scenarios were accepted. All scenarios that were
manually created and edited were also accepted.

Participants explicitly rejected an average of 22.3 (56%) of
the LLM generated scenarios. Note that in the Heraclitus tool,
a user can explicitly reject a scenario (by clicking the reject
button) but also has the option to discard it without making an
explicit decision (by moving on to generate more scenarios).
No manually generated scenarios were rejected by participants.



Answer to RQ2: Does an LLM help analysts
generate a larger number of acceptable SOTIF
scenarios, compared to doing the same task manu-
ally? Overall, with an LLM, participants generated an
average of 0.3 fewer meaningful scenarios than when
working manually. However, given the small sample
size for this study, this difference is within the margin
of error for this study, so no conclusion can be drawn
as to whether the participants were more productive
(in terms of quantity of scenarios generated) with or
without the LLM.

An important part of SOTIF analysis is exploring a wide
range of triggering conditions and their potential impact on
safety and having methods that push users to consider a wider
range of conditions can be advantageous. The level of coverage
of the modelled environment between the manual and LLM
generated scenarios was calculated by matching keywords
from the environment model to the scenarios produced dur-
ing the experiment. For example, if the environment model
included “rain”, then scenarios that included the word “rain”
were counted as covering that element. A single scenario was
permitted to cover more than one element if multiple unique
elements were found. The measure was validated by manually
checking the measured results for a subset of the scenarios to
confirm it did not produce false positive or negative matches.

When using the LLM to create scenarios, each scenario
covered an average of 13% of the available elements from
the environment model. Without the LLM, each scenario only
covered an average of 8% of the elements. Across all scenarios
generated with the LLM, 72% of available elements were
covered compared to only 14% across all manually created
scenarios.

While the LLM appears to increase the coverage of the
environmental model, some participants noted that the LLM
added elements to scenarios that did not impact the outcome.
We have called this phenomenon “scenario packing”. For
instance, a scenario for the adaptive cruise control example
might involve a rear vehicle, but the presence of the rear vehi-
cle did not contribute to the functional insufficiency described.
Despite limitations in the measure used for this study, the
possibility of an LLM improving the environmental coverage
of a SOTIF analysis is important to consider.

Answer to RQ3: Do the SOTIF scenarios pro-
duced by the LLM provide better coverage of the
system environment, compared to doing the same
task manually? Using an LLM, participants generated
scenarios that cover a wider breadth of environmental
conditions than when manually creating scenarios.
However, it is possible that some of environmental
conditions in the LLM-generated scenarios were not
directly related to the functional insufficiency being
explored in the scenario.

B. Questionnaire Results

Several questions on the questionnaire asked participants
about the perceived utility of LLM-supported scenario cre-
ation. Questions covered topics such as speed of scenario
creation, coverage of environmental conditions, novelty of
scenarios, the role of the LLM for brainstorming, and whether
an LLM could be used in future SOTIF analysis work. A
majority of participants felt that using an LLM allowed them
to create scenarios faster, compared to manual-only creation.
Further, a majority felt that the LLM provided useful scenarios
that covered a wider range of environmental conditions, even
if they required editing to fix problems. However, participants
were split as to whether the resulting scenarios described inter-
esting or novel scenarios, compared to ones created manually.

Five out of six participants felt that even if the LLM-
provided scenarios were not immediately usable, they gave
them ideas for additional scenarios to record manually. When
asked how they would use an LLM to support SOTIF analysis
for a real-world analysis, only one out of six participants said
they would not use an LLM at all. The remaining five indicated
they would use an LLM for some manner of brainstorming
to augment or enrich scenarios created manually. Therefore,
findings suggest that LLMs are capable of producing credible
SOTIF scenarios.

C. Observations on Quality

After the experiment, a random sample of twenty accepted
scenarios (ten manually created, ten created with LLM sup-
port) were reviewed for quality. The following observations
summarize the findings of this review.

Incorrect or Incomplete Scenarios: LLM-provided haz-
ards and guidewords for each scenario were often incorrect,
however, questionnaire results indicated that participants felt
these fields were usually consistent with the given scenario.
Incorrect guidewords were also observed in the manually
generated scenarios. In some scenarios the LLM split key
pieces of information between the description, rationale, and
trigger fields, leading to descriptions that did not fully describe
a sequence of events leading to the occurrence of a hazard.

Shallow World Knowledge: In some scenarios, the LLM
displayed inaccuracies in physical and logical reasoning and a
shallow understanding of the system (e.g., how radar sensors
behave under various environmental conditions).

Imprecision in Manual Scenarios: Several forms of im-
precision were noted amongst the manually generated scenar-
ios. These included abstractions that detracted from scenario
specificity; deviations from the requested “sequence of events”
style, instead providing “if-then” hypotheses; and “scenario
packing”, in which descriptions included multiple scenarios.
Scenarios generated with LLM support tended to focus on one
scenario per description and were more likely to have precise
descriptions, despite being prone to wordiness and inclusion
of unnecessary elements.



TABLE I
INTERACTIONS BETWEEN STUDY PARTICIPANTS AND HERACLITUS.

Participants LLM Interaction Candidates Rejected Edited Accepted
# Group # Queries Sent # Valid Resp. Avg. Resp. Time[s] Man. LLM Man. LLM Man. LLM Man. LLM

P1 B 24 19 (79%) 14.5 5 37 - 20 (54%) 1 0 5 17 (46%)
P2 B 24 24 (100%) 15.5 27 45 - 29 (64%) 15 12 27 13 (29%)
P3 B 31 26 (84%) 14.2 14 46 - 26 (56%) 1 6 14 20 (43%)
P4 A 29 26 (90%) 14.0 13 43 - 20 (47%) 10 16 13 23 (53%)
P5 A 25 20 (80%) 4.4 17 14 - 6 (43%) 8 6 17 6 (43%)
P6 A 29 28 (97%) 15.0 20 54 - 33 (61%) 0 13 20 15 (28%)

TOTAL 162 143 - 96 239 - 134 35 53 96 94
AVERAGE 27 23.8 (88%) 12.9 16 39.8 - 22.3 5.8 6.6 16 15.7

Answer to RQ1: Can an LLM produce a useful
proportion (33%) of acceptable SOTIF scenarios
that would assist an analyst during a SOTIF
analysis? A useful proportion (40%, p < 0.05) of
the SOTIF scenarios generated by the LLM in this
experiment were of sufficient quality to be accepted
(possibly with editing) by human analysts. Further,
a majority of participants in the experiment felt that
LLM-assisted scenario generation could be useful for
SOTIF scenario generation work. Taken together, these
results indicate that it is possible for an LLM, used in
combination with the Heraclitus method, to provide
meaningful support for a SOTIF analysis. However,
opportunities exist for improvement in the quality of
the generated scenarios.

VI. RELATED WORK

Given the novelty of this topic, there are no existing works
on LLM-supported SOTIF analysis. As such, a literature
review was performed with a focus on the use of LLMs to
support or perform system safety analysis. Some of the meth-
ods explored include Hazard and Operability Study (HAZOP)
[10], System-Theoretic Process Analysis (STPA) [11], [12],
Hazard and Risk Analysis (HARA) [13], [14], Failure Mode
and Effects Analysis (FMEA) [15], pure hazard identification
[16], and eliminative argumentation [17].

The common theme across the reviewed literature was that
LLMs were found to show potential, but only if a human
was involved to check and/or moderate the generated content.
The technology has not yet been found effective for a fully
automated pipeline due to limitations with its robustness and
trustworthiness.

Qi et al. [11] evaluated how different human-LLM col-
laboration schemes affect the quality of an STPA. Three
schemes were tested against two separate automotive baseline
examples. The authors qualitatively assessed their performance
based on a set of predefined attributes (e.g. ability to identify
hazards, ability to identify causes) and found that the effective
performance of the different schemes was commensurate with
the cost and complexity of its execution, with one scheme
(“Recurring Duplex”) outperforming both expert generated

baselines. This scheme facilitated the most collaboration be-
tween the users and LLM throughout the STPA process,
resulting in a higher quality output. The authors’ preliminary
conclusion is that there appears to be an objective improve-
ment of STPA quality using the collaboration schemes with
LLMs. Concerns regarding the validity of their conclusions
still exist regarding the subjectivity of the human-in-the-loop
during the evaluation of the tool, and the relatively low number
of experiments performed using the ChatGPT platform.

Nouri et al. [13], [14] developed a fully automated pipeline
that integrates GPT-4.0 into the HARA process (defined as
identifying hazards, assigning scenarios to each identified
hazard, and defining safety goals). The pipeline consists of a
multi-task framework, where a description of an autonomous
driving function is input into a cascading structure of LLM
modules, each dedicated to a task of the HARA. Each modules
receives a structured prompt based on the input, other module
outputs, and databases of scenarios/malfunctions, and the
resulting HARA is output. To evaluate the performance of
the tool, the researchers engaged nine industry experts to
review an LLM generated HARA. The framework was found
to underperform when compared to expert-crafted HARAs but
was particularly ineffective at identifying and formulating the
hazardous events. The researchers concluded that the current
state of the tool could be useful in supplementing the HARA
process, but the technology is not yet developed to a point
where the process can be fully automated.

Slivis-Cividjian et al. [15] developed a web-based applica-
tion called “i-SART” to assist radiation therapy (RT) prac-
titioners in performing an effective proactive safety analysis
by augmenting the FMEA method. A database of failure
modes was generated, primarily by experts, but with additional
“synthetic” failure modes developed using various natural
language processing techniques. A model was trained on a
data set consisting of failure modes from the i-SART database
and from headlines of RT incident reports. Though 230 (53
duplicates) of the 640 failure modes produced were identified
as useful by an RT expert, the authors found that the LLM
generated failure modes lacked syntactic accuracy and clarity.



VII. DISCUSSION

This paper has introduced the Heraclitus method, which
aims to facilitate human-led SOTIF scenario generation using
an LLM. The method was operationalized by implementing it
as part of a prototype software tool by the same name. A small
control trial was performed to provide (preliminary) validation
of the method and answer key research questions related to the
feasibility and utility of the Heraclitus method.

The most important finding of this experiment is that LLMs,
when used according to the Heraclitus method, can indeed
produce meaningful or acceptable SOTIF scenarios, though
some might require light editing. Further, the proportion of
meaningful or acceptable scenarios is at least 33% (i.e., one
in three scenarios are acceptable). Our interpretation of this
result is that LLM-assisted SOTIF scenario generation has the
potential to meaningfully support human analysts.

The small sample size for our study prevents any conclusion
about utility of LLM-supported SOTIF scenario generation
compared to a manual only approach, in terms of the quantity
of scenarios created. However, it is interesting that the results
between the control and intervention groups in the experiment
are very similar. This suggests that additional improvements
to Heraclitus could result in improvements to productivity.
This interpretation is further supported by qualitative results
from the post-experiment questionnaire and inspection of the
generated scenarios.

The quantity of scenarios is only one measure of utility. It
is also important to consider other ways that an LLM might
support SOTIF analysis. For instance, some participants felt
that the LLM helped guide their thinking, even if they did
not use scenarios that were generated. Another measure of
utility is whether using an LLM increased the breadth of
environmental condition coverage. Our results indicate that
it is possible that using an LLM increases environmental
coverage, but further work is required to determine if the
increased coverage is meaningful to the generated scenarios.

A. Threats to Validity
The small number of participants is a threat to external

validity; the results do not provide enough statistical power to
draw significant conclusions about the impact of an LLM on
SOTIF scenario creation versus manual scenario creation. It is
also possible that participant subjectivity may have influenced
results. In this regard, the results presented should be inter-
preted observationally (i.e., only for this study group, using
the Llama 3.2 11b model in the Fall of 2024). The absence of
statistically significant conclusions, along with the qualitative
nature of many of the stated findings also impacts internal
validity. As such, results should be viewed as preliminary, but
certainly promising.

B. Closing Remarks and Future Work
This paper has reported on the first step in a research project

aimed at using LLMs for SOTIF scenario generation. The
preliminary results are promising and have revealed several di-
rections for future work, many of which are already being im-
plemented. These include exploring prompt refinement, more

sophisticated prompting techniques (e.g. iterative prompting),
and newer and/or larger models to improve the LLM’s physical
and logical reasoning around a system’s response to stimuli;
improving system modelling to better capture the complexities
of real-world systems; performing further validation of the
Heraclitus method using case studies and other experiments
with larger sample sizes and more diverse systems; and
developing a quantitative approach to assessing coverage of
LLM-generated scenarios.
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